950 resultados para Learning conditions
Resumo:
To support student learning in a large Metabolism and Nutrition class, we have introduced a web-based package, using a commercially available program, WebCT. The package was developed at a minimal cost and with limited resources. In addition to downloadable (PDF) versions of lecture Powerpoint presentations, tutorial outlines and a practical class exercise, web-based self-directed learning exercises were included to reinforce and extend lecture material in an active learning environment. The web-site also contained a variety of formative and summative assessment tasks that examined both factual recall and higher order thinking Detailed course information, timetables and a bulletin board were also readily accessible. Student usage of the site was generally high, but varied widely between individual students. Students who achieved a high overall score for the course completed on average three times as many formative assessment items and achieved a higher score for all tests than students who did poorly. Student feedback about the site was very positive with the majority of students reporting that the course material and assessment items that were available were useful to their learning. Administration of the course was also facilitated. (C) 2001 IUBMB. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Utilization of salt affected wasteland by growing forage shrubs has enormous economic and environmental implication for developing countries like Pakistan, where approximately 6.3 million ha of the land is salt affected. Considering the importance of Atriplex and Maireana species, research has been conducted using their different species on the salt affected soils of Faisalabad. Most of Atriplex and Maireana species survived under the environmental conditions of Faisalabad and gave the good yield in the form of forage. Some of these species are woody and can be used for fuel purposes. Sixteen genotypes of Atriplex and Maireana were tested for their tolerance to waterlogging in order to identify halophytic fodder shrubs suitable for growth on secondary salt-affected and waterlogged farmland. The physiological and morphological responses of the species tested were typical of species with a generally poor tolerance to waterlogging. Despite this, some species (eg A. Amnicola) were surprisingly resistant, surviving up to five months of waterlogging at moderate salinity and high evapotranspirational demand. The most resistant species, A amnicola maintained higher transpiration rates, leaf water potentials and shoot extension rates than most other species during five weeks of waterlogging, and a return to control levels more quickly than other species after plots were drained. Although little morphological adaptation to waterlogged conditions was detected, a shallow and extensive lateral root system and the formation of many short aerenchymatous adventitious roots from procumbent branches appeared to advantage A. Amnicola in an environment highly heterogeneous in salinity and low in oxygen concentration. Shallow fibrous rooted species were quickly killed by waterlogging, although the procumbent branches of some individuals survived as clones if they developed adventitious roots.
Resumo:
Insect learning can change the preferences an egg laying female displays towards different host plant species. Current hypotheses propose that learning may be advantageous in adult host selection behaviour through improved recognition, accuracy or selectivity in foraging. In this paper, we present a hypothesis for when learning can be advantageous without such improvements in adult host foraging. Specifically, that learning can be an advantageous strategy for egg laying females when larvae must feed on more than one plant in order to complete development, if the fitness of larvae is reduced when they switch to a different host species. Here, larvae benefit from developing on the most abundant host species, which is the most likely choice of host for an adult insect which increases its preference for a host species through learning. The hypothesis is formalised with a mathematical model and we provide evidence from studies on the behavioural ecology, of a number of insect species which demonstrate that the assumptions of this hypothesis may frequently be fulfilled in nature. We discuss how multiple mechanisms may convey advantages in insect learning and that benefits to larval development, which have so far been overlooked, should be considered in explanations for the widespread occurrence of learning.
Resumo:
Aerial parts of lettuce plants were grown under natural tropical fluctuating ambient temperatures, but with their roots exposed to two different root-rone temperatures (RZTs): a constant 20 degreesC-RZT and a fluctuating ambient (A-) RZT from 23-40 degreesC, Plants grown at A-RZT showed lower photosynthetic CO2 assimilation (A), stomatal conductance (g(s)), midday leaf relative water content (RWC), and chlorophyll fluorescence ratio F-v/F-m than 20 degreesC-RZT plants on both sunny and cloudy days. Substantial midday depression of A and g(s) occurred on both sunny and cloudy days in both RZT treatments, although F-v/F-m did not vary diurnally on cloudy days. Reciprocal temperature transfer experiments investigated the occurrence and possible causes of stomatal and non-stomatal limitations of photosynthesis. For both temperature transfers, light-saturated stomatal conductance (g(s) (sat)) and photosynthetic CO2 assimilation (A(sat)) were highly correlated with each other and with midday RWC, suggesting that A was limited by water stress-mediated stomatal closure, However, prolonged growth at A-RZT reduced light- and CO2-saturated photosynthetic O-2 evolution (P-max), indicating non-stomatal limitation of photosynthesis. Tight temporal coupling of leaf nitrogen content and P-max during both temperature transfers suggested that decreased nutrient status caused this non-stomatal limitation of photosynthesis.
Resumo:
This paper aims to describe the historical outline and current development of the educational policy for students with learning difficulties in Australia, focusing especially on the state of Queensland. In order to develop educational policy of learning difficulities at the state level, the concept of learning difficulities had been discussed until the middle of the 1970's. Receiving the submissions which argued strongly against a diagnostically-oriented definition of learning disabilities, the Select Comittee concluded that there was much conceptual confusion regarding the definition and cause of learining difficulties that might take many years to resolve. Despite that it was recongnised that action was needed to assist children by looking at their "total learning environmerit", and recommended the development of an educational policy for students with learning difficulties. During 1980's, support teachers for students with learning difficulties were employed in many schools. Scince the early 1980's support teachers have been making their efforts in regular classrooms rather than in the resource rooms. Their roles have been to help students with learning difficulties using effective and specific skills, and to consult with the regular classroom teacher in solving the problems related to learning difficulties in regular classes. Currently, the support system for students with learning difficulties has been employed to organize a more systematic and broader approach in Queensland based on the accountability of schools. In the context of enphasizing literacy and numeracy, a systematic whole school approach and particular programs, such as the Year 2 Diagnostic Net and Reading Recovery, have been introduced into the educational system for early identification and early intervention.
Resumo:
Stable carbon and nitrogen isotope signatures (delta C-13 and delta N-15) of Cannabis sativa were assessed for their usefulness to trace seized Cannabis leaves to the country of origin and to source crops by determining how isotope signatures relate to plant growth conditions. The isotopic composition of Cannabis examined here covered nearly the entire range of values reported for terrestrial C-3 plants. The delta C-13 values of Cannabis from Australia, Papua New Guinea and Thailand ranged from -36 to -25 parts per thousand, and delta N-15 values ranged from -1.0 to 15.8 parts per thousand. The stable isotope content did not allow differentiation between Cannabis originating from the three countries, but delta C-13 values of plantation-grown Cannabis differed between well-watered plants (average delta C-13 of -30.0 parts per thousand) and plants that had received little irrigation (average delta C-13 of -26.4 parts per thousand). Cannabis grown under controlled conditions had delta C-13 values of -32.6 and -30.6 parts per thousand with high and low water supply, respectively. These results indicate that water availability determines leaf C-13 in plants grown under similar conditions of light, temperature and air humidity. The delta C-13 values also distinguished between indoor- and outdoor-grown Cannabis; indoor- grown plants had overall more negative delta C-13 values (average -31.8 parts per thousand) than outdoor-grown plants (average -27.9 parts per thousand). Contributing to the strong C-13-depletion of indoor- grown plants may be high relative humidity, poor ventilation and recycling of C-13-depleted respired CO2. Mineral fertilizers had mostly lower delta N-15 values (-0.2 to 2.2 parts per thousand) than manure-based fertilizers (7.6 to 22.7 parts per thousand). It was possible to link delta N-15 values of fertilizers associated with a crop site to soil and plant delta N-15 values. The strong relationship between soil, fertilizer, and plant delta N-15 suggests that Cannabis delta N-15 is determined by the isotopic composition of the nitrogen source. The distinct delta N-15 values measured in Cannabis crops make delta N-15 an excellent tool for matching seized Cannabis with a source crop. A case study is presented that demonstrates how delta C-13 and delta N-15 values can be used as a forensic tool.
Resumo:
Participatory plant breeding (PPB) has been suggested as an effective alternative to formal plant breeding (FPB) as a breeding strategy for achieving productivity gains under low input conditions. With genetic progress through PPB and FPB being determined by the same genetic variables, the likelihood of success of PPB approaches applied in low input target conditions was analyzed using two case studies from FPB that have resulted in significant productivity gains under low input conditions: (1) breeding tropical maize for low input conditions by CIMMYT, and (2) breeding of spring wheat for the highly variable low input rainfed farming systems in Australia. In both cases, genetic improvement was an outcome of long-term investment in a sustained research effort aimed at understanding the detail of the important environmental constraints to productivity and the plant requirements for improved adaptation to the identified constraints, followed up by the design and continued evaluation of efficient breeding strategies. The breeding strategies used differed between the two case studies but were consistent in their attention to the key determinants of response to selection: (1) ensuring adequate sources of genetic variation and high selection pressures for the important traits at all stages of the breeding program, (2) use of experimental procedures to achieve high levels of heritability in the breeding trials, and (3) testing strategies that achieved a high genetic correlation between performance of germplasm in the breeding trials and under on-farm conditions. The implications of the outcomes from these FPB case studies for realizing the positive motivations for adopting PPB strategies are discussed with particular reference for low input target environment conditions.
Resumo:
It is believed that surface instabilities can occur during the extrusion of linear low density polyethylene due to high extensional stresses at the exit of the die. Local crack development can occur at a critical stress level when melt rupture is reached. This high extensional stress results from the rearrangement of the flow at the boundary transition between the wall exit and the free surface. The stress is highest at the extrudate surface and decreases into the bulk of the material. The location of the region where the critical level is reached can determine the amplitude of the extrudate surface distortion, This paper studies the effect of wall slip on the numerically simulated extensional stress level at the die exit and correlates this to the experimentally determined amplitude of the surface instability. The effect of die exit radius and die wall roughness on extrusion surface instabilities is also correlated to the exit stress level in the same way. Whereas full slip may completely suppress the surface instability, a reduction in the exit stress level and instability amplitude is also shown for a rounded die exit and a slight increase in instability is shown to result from a rough die wall. A surface instability map demonstrates how the shear rate for onset of extrusion surface instabilities can be predicted on the basis of melt strength measurements and simulated stress peaks at the exit of the die. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Relationships were examined between environmental conditions mediated by packaging and handling and the deterioration of harvested Geraldton waxflower cv. 'Fortune Cookie'. Disease severity plus flower and leaf drop caused by inoculation with Botrytis cinerea were reduced by lowering handling temperatures to 0, 5 or 5/20 degreesC alternated daily, versus 20 degreesC. They were also reduced by inhibition of ethylene action with a silver thiosulfate pulse pretreatment. Additionally, treatments that enhanced water loss, such as packing dry, keeping forced air-cooling holes open and strategic placement of extra ventilation holes may also reduce disease severity and flower plus leaf fall. Inclusion of KMnO4-based Bloomfresh ethylene scrubbing sachets in packages did not reduce disease severity or lessen flower plus leaf fall. Thus, deterioration of waxflower packaged in commercial cartons can be minimised by keeping temperatures low, packing plant material dry, use of cartons with strategically placed ventilation holes and/or pretreatment with silver thiosulfate.
Resumo:
Pulverised New Zealand coal samples have been tested from an initial temperature of 40 degreesC and reacted adiabatisally in an oven with oxygen to provide a full temperature history of auto-oxidation up to the self-sustained process of combustion. This procedure produces a self-heating rate index, R-70, calculated as the ratio of the time taken to reach 70 degreesC (degreesC/h). The R-70 index is a measure of the coal's propensity to spontaneous combustion. R-70 values for New Zealand coals are much higher than any previously published results. They show a rank dependence, whereby subbituminous coals have the highest propensity to spontaneous combustion (14.91-17.23 degreesC/h). A lignite sample has an R-70 value of 7.76 degreesC/h, and high-volatile bituminous B coals have R-70 values of 0.31-2.23 degreesC/h. Samples stored for 2 years show the same rank trend. The nature of this trend is most likely a function of the internal surface area of the coal that governs the available sites for oxidation. Calculating the Suggate rank; for any New Zealand coal can be used to rare its propensity to spontaneous combustion. Resin bodies in the subbituminous coal show no propensity to spontaneous combustion. (C) 2001 Elsevier Science B.V. All rights reserved.