916 resultados para KNEE TRAUMA
Resumo:
Crown dilaceration of permanent teeth occurs due to the non-axial displacement of the already formed hard tissue portion of the developing crown at an angle to their longitudinal axis due to trauma to the primary predecessors. This is a rare condition, representing only 3% of the total of injuries to developing teeth and usually occurs in permanent maxillary incisors because of the close proximity of their tooth germs to the primary incisors, which are more susceptible to trauma. This alteration frequently results from the intrusion of a primary tooth when the child is around 2 years of age, at which time half of the crown of the permanent successor is already formed. Teeth with dilacerated crowns may either erupt with buccal or lingual displacement or remain impacted. The treatment may involve endodontic, orthodontic, restorative and prosthetic procedures. This paper reports the restorative treatment proposed to reestablish the esthetics and function of the affected teeth in three cases of crown dilaceration in permanent maxillary incisors after trauma to their primary predecessors.
Resumo:
Este artigo propõe um diálogo entre as teorizações psicanalíticas de Sandor Ferenczi e Donald Winnicott a respeito do papel do objeto no psiquismo, tanto em sua dimensão traumática como constitutiva. Serão discutidas as contribuições convergentes dos autores à concepção psicanalítica de trauma e suas vicissitudes no psiquismo. Seguindo uma tradição de valorização do meio ambiente, o trauma passa a ser pensado como falha na relação entre o sujeito e outro.
Resumo:
Neste trabalho discutimos as ideias de confusão de línguas, de trauma e de hospitalidade no campo psicanalítico. Para Ferenczi, a relação adulto-criança é marcada por uma confusão decorrente de uma diferença de línguas, de forma que muitas vezes um não entende o outro. Nesse contexto, é possível a emergência do trauma patogênico. A experiência analítica, ao invés de levar o acontecimento traumático a domínios psíquicos melhores, pode reproduzir e até agravar o que foi vivido como catastrófico na infância. Neste sentido, o princípio de hospitalidade na clínica analítica é de suma importância para se evitar uma possível reprodução do trauma entre analista e analisando. Neste artigo utilizamos como referência principal a obra de Sándor Ferenczi, estabelecendo relações em alguns pontos com textos de Jacques Derrida e de Walter Benjamin, que discutem a origem da confusão de línguas e o problema da possibilidade da tradução.
Resumo:
OBJETIVO: Traduzir, adaptar culturalmente e validar o "Knee Society Score" (KSS) para a língua portuguesa e verificar suas propriedades de medida, reprodutibilidade e validade. MÉTODO: Avaliados 70 pacientes de ambos os sexos, em estudo clínico transversal, idade entre 55 e 85 anos, osteoartrose primária submetidos a artroplastia total de joelho, com o questionário KSS pelo avaliador 1 (inglês) e após 30 minutos pelo avaliador 2 (português) no pré- operatório e após três e seis meses de pós-operatório. RESULTADOS: O índice alfa de Cronbach e a diagramação de Bland-Altman não detectaram diferença entre as médias das duas avaliações no pré-operatório (p=1,000), com três meses (p=0,991) e seis meses de pós-operatório (p=0,985) na pontuação do joelho e na nota da função do joelho, p=1,000 nos três períodos. CONCLUSÃO: A versão brasileira do Knee Society Score, o Escore da Sociedade do Joelho, mostrou ser um instrumento de fácil compreensão e aplicação; válido e confiável para medir a pontuação e função do joelho de pacientes brasileiros submetidos a ATJ. Nível de Evidências: Estudos diagnósticos - Nivel de Evidência I, Teste de critérios diagnósticos desenvolvidos anteriormente em pacientes consecutivos (com padrão de referência "ouro" aplicado).
Resumo:
The aim of the present study was to investigate the association between the patellofemoral pain syndrome and the clinical static measurements: the rearfoot and the Q angles. The design was a cross-sectional, observational, case-control study. We evaluated 77 adults (both genders), 30 participants with patellofemoral pain syndrome, and 47 controls. We measured the rearfoot and Q angles by photogrammetry. Independent t-tests were used to compare outcome continuous measures between groups. Outcome continuous data were also transformed into categorical clinical classifications, in order to verify their statistical association with the dysfunction, and χ2 tests for multiple responses were used. There were no differences between groups for rearfoot angle [mean differences: 0.2º (95%CI -1.4-1.8)] and Q angle [mean differences: -0.3º (95%CI -3.0-2.4). No associations were found between increased rearfoot valgus [Odds Ratio: 1.29 (95%CI 0.51-3.25)], as well as increased Q angle [Odds Ratio: 0.77 (95%CI 0.31-1.93)] and the patellofemoral pain syndrome occurrence. Although widely used in clinical practice and theoretically thought, it cannot be affirmed that increased rearfoot valgus and increased Q angle, when statically measured in relaxed stance, are associated with patellofemoral pain syndrome (PFPS). These measures may have limited applicability in screening of the PFPS development.
Resumo:
The mechanisms of tissue changes induced by occlusal trauma are in no way comparable to orthodontic movement. In both events the primary cause is of a physical nature, but the forces delivered to dental tissues exhibit completely different characteristics in terms of intensity, duration, direction, distribution, frequency and form of uptake by periodontal tissues. Consequently, the tissue effects induced by occlusal trauma are different from orthodontic movement. It can be argued that occlusal trauma generates a pathological tissue injury in an attempt to adapt to new excessive functional demands. Orthodontic movement, in turn,performs physiological periodontal bone remodeling to change the position of the teeth in a well-planned manner, eventually restoring normalcy.
Resumo:
[EN] The purpose of this investigation was to determine the contribution of muscle O(2) consumption (mVO2) to pulmonary O(2) uptake (pVO2) during both low-intensity (LI) and high-intensity (HI) knee-extension exercise, and during subsequent recovery, in humans. Seven healthy male subjects (age 20-25 years) completed a series of LI and HI square-wave exercise tests in which mVO2 (direct Fick technique) and pVO2 (indirect calorimetry) were measured simultaneously. The mean blood transit time from the muscle capillaries to the lung (MTTc-l) was also estimated (based on measured blood transit times from femoral artery to vein and vein to artery). The kinetics of mVO2 and pVO2 were modelled using non-linear regression. The time constant (tau) describing the phase II pVO2 kinetics following the onset of exercise was not significantly different from the mean response time (initial time delay + tau) for mVO2 kinetics for LI (30 +/- 3 vs 30 +/- 3 s) but was slightly higher (P < 0.05) for HI (32 +/- 3 vs 29 +/- 4 s); the responses were closely correlated (r = 0.95 and r = 0.95; P < 0.01) for both intensities. In recovery, agreement between the responses was more limited both for LI (36 +/- 4 vs 18 +/- 4 s, P < 0.05; r = -0.01) and HI (33 +/- 3 vs 27 +/- 3 s, P > 0.05; r = -0.40). MTTc-l was approximately 17 s just before exercise and decreased to 12 and 10 s after 5 s of exercise for LI and HI, respectively. These data indicate that the phase II pVO2 kinetics reflect mVO2 kinetics during exercise but not during recovery where caution in data interpretation is advised. Increased mVO2 probably makes a small contribution to during the first 15-20 s of exercise.
Resumo:
[EN] Hypoxia affects O2 transport and aerobic exercise capacity. In two previous studies, conflicting results have been reported regarding whether O2 delivery to the muscle is increased with hypoxia or whether there is a more efficient O2 extraction to allow for compensation of the decreased O2 availability at submaximal and maximal exercise. To reconcile this discrepancy, we measured limb blood flow (LBF), cardiac output, and O2 uptake during two-legged knee-extensor exercise in eight healthy young men. They completed studies at rest, at two submaximal workloads, and at peak effort under normoxia (inspired O2 fraction 0.21) and two levels of hypoxia (inspired O2 fractions 0.16 and 0.11). During submaximal exercise, LBF increased in hypoxia and compensated for the decrement in arterial O2 content. At peak effort, however, our subjects did not achieve a higher cardiac output or LBF. Thus O2 delivery was not maintained and peak power output and leg O2 uptake were reduced proportionately. These data are consistent then with the findings of an increased LBF to compensate for hypoxemia at submaximal exercise, but no such increase occurs at peak effort despite substantial cardiac capacity for an elevation in LBF.
Resumo:
The knee joint is a key structure of the human locomotor system. The knowledge of how each single anatomical structure of the knee contributes to determine the physiological function of the knee, is of fundamental importance for the development of new prostheses and novel clinical, surgical, and rehabilitative procedures. In this context, a modelling approach is necessary to estimate the biomechanic function of each anatomical structure during daily living activities. The main aim of this study was to obtain a subject-specific model of the knee joint of a selected healthy subject. In particular, 3D models of the cruciate ligaments and of the tibio-femoral articular contact were proposed and developed using accurate bony geometries and kinematics reliably recorded by means of nuclear magnetic resonance and 3D video-fluoroscopy from the selected subject. Regarding the model of the cruciate ligaments, each ligament was modelled with 25 linear-elastic elements paying particular attention to the anatomical twisting of the fibres. The devised model was as subject-specific as possible. The geometrical parameters were directly estimated from the experimental measurements, whereas the only mechanical parameter of the model, the elastic modulus, had to be considered from the literature because of the invasiveness of the needed measurements. Thus, the developed model was employed for simulations of stability tests and during living activities. Physiologically meaningful results were always obtained. Nevertheless, the lack of subject-specific mechanical characterization induced to design and partially develop a novel experimental method to characterize the mechanics of the human cruciate ligaments in living healthy subjects. Moreover, using the same subject-specific data, the tibio-femoral articular interaction was modelled investigating the location of the contact point during the execution of daily motor tasks and the contact area at the full extension with and without the whole body weight of the subject. Two different approaches were implemented and their efficiency was evaluated. Thus, pros and cons of each approach were discussed in order to suggest future improvements of this methodologies. The final results of this study will contribute to produce useful methodologies for the investigation of the in-vivo function and pathology of the knee joint during the execution of daily living activities. Thus, the developed methodologies will be useful tools for the development of new prostheses, tools and procedures both in research field and in diagnostic, surgical and rehabilitative fields.
Resumo:
Mathematical models of the knee joint are important tools which have both theoretical and practical applications. They are used by researchers to fully understand the stabilizing role of the components of the joint, by engineers as an aid for prosthetic design, by surgeons during the planning of an operation or during the operation itself, and by orthopedists for diagnosis and rehabilitation purposes. The principal aims of knee models are to reproduce the restraining function of each structure of the joint and to replicate the relative motion of the bones which constitute the joint itself. It is clear that the first point is functional to the second one. However, the standard procedures for the dynamic modelling of the knee tend to be more focused on the second aspect: the motion of the joint is correctly replicated, but the stabilizing role of the articular components is somehow lost. A first contribution of this dissertation is the definition of a novel approach — called sequential approach — for the dynamic modelling of the knee. The procedure makes it possible to develop more and more sophisticated models of the joint by a succession of steps, starting from a first simple model of its passive motion. The fundamental characteristic of the proposed procedure is that the results obtained at each step do not worsen those already obtained at previous steps, thus preserving the restraining function of the knee structures. The models which stem from the first two steps of the sequential approach are then presented. The result of the first step is a model of the passive motion of the knee, comprehensive of the patello-femoral joint. Kinematical and anatomical considerations lead to define a one degree of freedom rigid link mechanism, whose members represent determinate components of the joint. The result of the second step is a stiffness model of the knee. This model is obtained from the first one, by following the rules of the proposed procedure. Both models have been identified from experimental data by means of an optimization procedure. The simulated motions of the models then have been compared to the experimental ones. Both models accurately reproduce the motion of the joint under the corresponding loading conditions. Moreover, the sequential approach makes sure the results obtained at the first step are not worsened at the second step: the stiffness model can also reproduce the passive motion of the knee with the same accuracy than the previous simpler model. The procedure proved to be successful and thus promising for the definition of more complex models which could also involve the effect of muscular forces.
Resumo:
Articular cartilage lesions, with their inherent limited healing potential, are hard to treat and remain a challenging problem for orthopedic surgeons. Despite the development of several treatment strategies, the real potential of each procedure in terms of clinical benefit and effects on the joint degeneration processes is not clear. Aim of this PhD project was to evaluate the results, both in terms of clinical and imaging improvement, of new promising procedures developed to address the challenging cartilage pathology. Several studies have been followed in parallel and completed over the 3-year PhD, and are reported in detail in the following pages. In particular, the studies have been focused on the evaluation of the treatment indications of a scaffold based autologous chondrocyte implantation procedure, documenting its results for the classic indication of focal traumatic lesions, as well as its use for the treatment of more challenging patients, older, with degenerative lesions, or even as salvage procedure for more advanced stages of articular degeneration. The second field of study involved the analysis of the results obtained treating lesions of the articular surface with a new biomimetic osteochondral scaffold, which showed promise for the treatment of defects where the entire osteochondral unit is involved. Finally, a new minimally invasive procedure based on the use of growth factors derived from autologous platelets has been explored, showing results and underlining indicatios for the treatment of cartilage lesions and different stages of joint degeneration. These studies shed some light on the potential of the evaluated procedures, underlining good results as well as limits, they give some indications on the most appropriate candidates for their application, and document the current knowledge on cartilage treatment procedures suggesting the limitations that need to be addressed by future studies to improve the management of cartilage lesions.
Resumo:
Restoring a correct implant kinematics and providing a good ligament balance and patellar tracking is mandatory to improve clinical and functional outcome after a Total Knee Replacement. Surgical navigation systems are a reliable and accurate tool to help the surgeon in achieving these goals. The aim of the present study was to use navigation system with an intra-operative surgical protocol to evaluate and determine an optimal implant kinematics during a Total Knee Replacement.
Resumo:
The goal of this thesis was the study of the cement-bone interface in the tibial component of a cemented total knee prosthesis. One of the things you can see in specimens after in vivo service is that resorption of bone occurs in the interdigitated region between bone and cement. A stress shielding effect was investigated as a cause to explain bone resorption. Stress shielding occurs when bone is loaded less than physiological and therefore it starts remodeling according to the new loading conditions. µCT images were used to obtain 3D models of the bone and cement structure and a Finite Element Analysis was used to simulate different kind of loads. Resorption was also simulated by performing erosion operations in the interdigitated bone region. Finally, 4 models were simulated: bone (trabecular), bone with cement, and two models of bone with cement after progressive erosions of the bone. Compression, tension and shear test were simulated for each model in displacement-control until 2% of strain. The results show how the principal strain and Von Mises stress decrease after adding the cement on the structure and after the erosion operations. These results show that a stress shielding effect does occur and rises after resorption starts.