941 resultados para In-plane Shear
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
BACKGROUND Lower limb amputees exhibit postural control deficits during standing which can affect their walking ability. OBJECTIVES The primary purpose of the present study was to analyze the thorax, pelvis, and hip kinematics and the hip internal moment in the frontal plane during gait in subjects with Unilateral Transtibial Amputation (UTA). METHOD The participants included 25 people with UTA and 25 non-amputees as control subjects. Gait analysis was performed using the Vicon(r) Motion System. We analyzed the motion of the thorax, pelvis, and hip (kinematics) as well as the hip internal moment in the frontal plane. RESULTS The second peak of the hip abductor moment was significantly lower on the prosthetic side than on the sound side (p=.01) and the control side (right: p=.01; left: p=.01). During middle stance, the opposite side of the pelvis was higher on the prosthetic side compared to the control side (right: p=.01: left: p=.01). CONCLUSIONS The joint internal moment at the hip in the frontal plane was lower on the prosthetic side than on the sound side or the control side. Thorax and pelvis kinematics were altered during the stance phase on the prosthetic side, presumably because there are mechanisms which affect postural control during walking.
Resumo:
Extensional detachment systems separate hot footwalls from cool hanging walls, but the degree to which this thermal gradient is the product of ductile or brittle deformation or a preserved original transient geotherm is unclear. Oxygen isotope thermometry using recrystallized quartz-muscovite pairs indicates a smooth thermal gradient (140 degrees C/100 m) across the gently dipping, quartzite-dominated detachment zone that bounds the Raft River core complex in northwest Utah (United States). Hydrogen isotope values of muscovite (delta D-Ms similar to-100 parts per thousand) and fluid inclusions in quartz (delta D-Fluid similar to-85 parts per thousand) indicate the presence of meteoric fluids during detachment dynamics. Recrystallized grain-shape fabrics and quartz c-axis fabric patterns reveal a large component of coaxial strain (pure shear), consistent with thinning of the detachment section. Therefore, the high thermal gradient preserved in the Raft River detachment reflects the transient geotherm that developed owing to shearing, thinning, and the potentially prominent role of convective flow of surface fluids.
Resumo:
Carbonate mylonites with varying proportions of second-phase minerals were collected at positions of increasing metamorphic grade along the basal thrust of the Morcles nappe (Helvetic nappes, Switzerland). Variations of temperature, stress, and strain rate, changes in chemistry of solid and fluid phases, and differing degrees of strain localization and annealing were tracked by measuring the shapes, mean sizes, and size distributions of both matrix and second-phase grains, as well as crystal preferred orientation (CPO) of the matrix. Field structures suggest that strain rate was constant along the fault. The mean and distribution of the calcite grain sizes were affected most profoundly by temperature: Increased temperature, presumably accompanied by decreased stress, correlated with larger mean sizes and wider size distributions. At a given location, the matrix grains in mylonites with more second-phase particles are, on average, smaller, have narrower size distributions, and have more elongate shapes. For example, mylonites with 50 vol.% of second phases have matrix grain sizes half that of pure mylonites. Changes in calcite chemistry and the presence of synkinematic fluids seemed to influence microfabric only weakly. Temporal variations in conditions, such as exhumation-induced cooling, apparently provoke changes in temperature, stress, and strain rate along the nappe. These changes result in further strain localization during retrograde conditions and cause the grain size to be reduced by an additional 50%. The matrix CPO strengthens with increasing temperature or strain, but weakens and rotates with increasing second-phase content, These fabric changes suggest differing rates of grain growth, grain size reduction, and development of CPO owing to variations in the deformation conditions and, perhaps, mechanisms. To interpret natural mylonite structures or to extrapolate mechanical data to natural situations requires careful characterization of the microfabric, and, in particular, second-phase minerals. (c) 2007 Elsevier B.V, All rights reserved.
Resumo:
Attempts to use a stimulated echo acquisition mode (STEAM) in cardiac imaging are impeded by imaging artifacts that result in signal attenuation and nulling of the cardiac tissue. In this work, we present a method to reduce this artifact by acquiring two sets of stimulated echo images with two different demodulations. The resulting two images are combined to recover the signal loss and weighted to compensate for possible deformation-dependent intensity variation. Numerical simulations were used to validate the theory. Also, the proposed correction method was applied to in vivo imaging of normal volunteers (n = 6) and animal models with induced infarction (n = 3). The results show the ability of the method to recover the lost myocardial signal and generate artifact-free black-blood cardiac images.
Resumo:
Selostus: Korkealla virranvoimakkuudella tainnutettujen broilereiden rintafileen irroitushetken vaikutus lihaksen leikkausvoiman vastukseen, pH:hon, keittohävikkiin ja väriin
Resumo:
We use wave packet mode quantization to compute the creation of massless scalar quantum particles in a colliding plane wave spacetime. The background spacetime represents the collision of two gravitational shock waves followed by trailing gravitational radiation which focus into a Killing-Cauchy horizon. The use of wave packet modes simplifies the problem of mode propagation through the different spacetime regions which was previously studied with the use of monochromatic modes. It is found that the number of particles created in a given wave packet mode has a thermal spectrum with a temperature which is inversely proportional to the focusing time of the plane waves and which depends on the mode trajectory.
Resumo:
Purpose To investigate the differences in viscoelastic properties between normal and pathologic Achilles tendons ( AT Achilles tendon s) by using real-time shear-wave elastography ( SWE shear-wave elastography ). Materials and Methods The institutional review board approved this study, and written informed consent was obtained from 25 symptomatic patients and 80 volunteers. One hundred eighty ultrasonographic (US) and SWE shear-wave elastography studies of AT Achilles tendon s without tendonopathy and 30 studies of the middle portion of the AT Achilles tendon in patients with tendonopathy were assessed prospectively. Each study included data sets acquired at B-mode US (tendon morphology and cross-sectional area) and SWE shear-wave elastography (axial and sagittal mean velocity and relative anisotropic coefficient) for two passively mobilized ankle positions. The presence of AT Achilles tendon tears at B-mode US and signal-void areas at SWE shear-wave elastography were noted. Results Significantly lower mean velocity was shown in tendons with tendonopathy than in normal tendons in the relaxed position at axial SWE shear-wave elastography (P < .001) and in the stretched position at sagittal (P < .001) and axial (P = .0026) SWE shear-wave elastography . Tendon softening was a sign of tendonopathy in relaxed AT Achilles tendon s when the mean velocity was less than or equal to 4.06 m · sec(-1) at axial SWE shear-wave elastography (sensitivity, 54.2%; 95% confidence interval [ CI confidence interval ]: 32.8, 74.4; specificity, 91.5%; 95% CI confidence interval : 86.3, 95.1) and less than or equal to 5.70 m · sec(-1) at sagittal SWE shear-wave elastography (sensitivity, 41.7%; 95% CI confidence interval : 22.1, 63.3; specificity, 81.8%; 95% CI confidence interval : 75.3, 87.2) and in stretched AT Achilles tendon s, when the mean velocity was less than or equal to 4.86 m · sec(-1) at axial SWE shear-wave elastography (sensitivity, 66.7%; 95% CI confidence interval : 44.7, 84.3; specificity, 75.6%; 95% CI confidence interval : 68.5, 81.7) and less than or equal to 14.58 m · sec(-1) at sagittal SWE shear-wave elastography (sensitivity, 58.3%; 95% CI confidence interval : 36.7, 77.9; specificity, 83.5%; 95% CI confidence interval : 77.2, 88.7). Anisotropic results were not significantly different between normal and pathologic AT Achilles tendon s. Six of six (100%) partial-thickness tears appeared as signal-void areas at SWE shear-wave elastography . Conclusion Whether the AT Achilles tendon was relaxed or stretched, SWE shear-wave elastography helped to confirm and quantify pathologic tendon softening in patients with tendonopathy in the midportion of the AT Achilles tendon and did not reveal modifications of viscoelastic anisotropy in the tendon. Tendon softening assessed by using SWE shear-wave elastography appeared to be highly specific, but sensitivity was relatively low. © RSNA, 2014.
Resumo:
Results of a field and microstructural study between the northern and the central bodies of the Lanzo plagioclase peridotite massif (NW Italy) indicate that the spatial distribution of deformation is asymmetric across kilometre-scale mantle shear zones. The southwestern part of the shear zone (footwall) shows a gradually increasing degree of deformation from porphyroclastic peridotites to mylonite, whereas the northeastern part (hanging wall) quickly grades into weakly deformed peridotites. Discordant gabbroic and basaltic dykes are asymmetrically distributed and far more abundant in the footwall of the shear zone. The porphyroclastic peridotite displays porphyroclastic zones and domains of igneous crystallization whereas mylonites are characterized by elongated porphyroclasts, embedded between fine-grained, polycrystalline bands of olivine, plagioclase, clinopyroxene, orthopyroxene, spinel, rare titanian pargasite, and domains of recrystallized olivine. Two types of melt impregnation textures have been found: (1) clinopyroxene porphyroclasts incongruently reacted with migrating melt to form orthopyroxene plagioclase; (2) olivine porphyroclasts are partially replaced by interstitial orthopyroxene. The meltrock reaction textures tend to disappear in the mylonites, indicating that deformation in the mylonite continued under subsolidus conditions. The pyroxene chemistry is correlated with grain size. High-Al pyroxene cores indicate high temperatures (11001030C), whereas low-Al neoblasts display lower final equilibration temperatures (860C). The spinel Cr-number [molar Cr/(Cr Al)] and TiO2 concentrations show extreme variability covering almost the entire range known from abyssal peridotites. The spinel compositions of porphyroclastic peridotites from the central body are more variable than spinel from mylonite, mylonite with ultra-mylonite bands, and porphyroclastic rocks of the northern body. The spinel compositions probably indicate disequilibrium and would favour rapid cooling, and a faster exhumation of the central peridotite body, relative to the northern one. Our results indicate that melt migration and high-temperature deformation are juxtaposed both in time and space. Meltrock reaction may have caused grain-size reduction, which in turn led to localization of deformation. It is likely that melt-lubricated, actively deforming peridotites acted as melt focusing zones, with permeabilities higher than the surrounding, less deformed peridotites. Later, under subsolidus conditions, pinning in polycrystalline bands in the mylonites inhibited substantial grain growth and led to permanent weak zones in the upper mantle peridotite, with a permeability that is lower than in the weakly deformed peridotites. Such an inversion in permeability might explain why actively deforming, fine-grained peridotite mylonite acted as a permeability barrier and why ascending mafic melts might terminate and crystallize as gabbros along actively deforming shear zones. Melt-lubricated mantle shear zones provide a mechanism for explaining the discontinuous distribution of gabbros in oceancontinent transition zones, oceanic core complexes and ultraslow-spreading ridges.
Resumo:
The influence of second phases (e.g., pyroxenes) on olivine grain size was studied by quantitative microfabric analyses of samples of the Hilti massif mantle shear zone (Semail ophiolite, Oman). The microstructures range from porphyroclastic tectonites to ultramylonites, from outside to the center of the shear zone. Starting at conditions of ridge-related flow, they formed under continuous cooling leading to progressive strain localization. The dependence of the average olivine grain size on the second-phase content can be split into a second-phase controlled and a dynamic recrystallization-controlled field. In the former, the olivine grain size is related to the ratio between the second-phase grain size and volume fraction (Zener parameter). In the latter, dynamic recrystallization manifested by a balance between grain growth and grain size reduction processes yields a stable olivine grain size. In both fields the average olivine and second-phase grain size decreases with decreasing temperature. Combining the microstructural information with deformation mechanism maps suggests that the porphyroclastic tectonites (similar to 1100 degrees C) and mylonites (similar to 800 degrees C) formed under the predominance of dislocation creep. Since olivine-rich layers are intercalated with layer parallel, polymineralic bands in the mylonites, nearly equiviscous conditions can be assumed. In the ultramylonites, diffusion creep represents the major deformation mechanism in the polymineralic layers. It is this switch in deformation mechanism from dislocation creep to diffusion creep that forces strain to localize in the fine-grained polymineralic domains at low temperatures (<similar to 700 degrees C), underlining the role of the second phases on strain localization in cooling mantle rocks.
Resumo:
Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries. Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound(IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations. Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall. Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.