878 resultados para Genotype-by-environment interaction
Resumo:
This thesis investigated the basis for availability of iron (Fe) and zinc (Zn) content in different banana fruits grown in Uganda and Australia. Rather than micronutrient content levels in different banana cultivar, genotype and environment interactions explained much of the differences. Such information should provide important insights for future developments in the biofortification of banana. Bananas consumed in Uganda did not contain sufficient levels of Fe and Zn that meet the nutrient requirements for vulnerable groups.
Resumo:
In a series of polymers containing alternately placed electron-rich dialkoxyilaphthalene (DAN) donors and electron-deficient pyromellitic diimide (PDI) acceptors linked by hexa(oxyethylene) (OE-6) segments, the ability to form a folded D-A stack was intentionally disrupted by random inclusion of varying amounts of a comonomer that is devoid of DAN donor units. NMR spectroscopic studies of folding in these copolymers, induced by NH4SCN that coordinates with the OE-6 segments and facilitates the charge-transfer (C-T) induced D-A stacking, clearly reveals the presence of PDI units that are isolated and those that are located at the ends of (D-A),, stacks. Similar conclusions regarding the presence of stacked and unstacked regions along the polymer chain were also inferred from UV-vis spectroscopic studies that probe the evolution of charge-transfer band. One fascinating aspect of these copolymers wits their ability to undergo it two-step folding: first, short (D-A),, stacks are formed by the interaction of the NH4+ ion with some specific regions of the polymer chain, and subsequently these Stacks are further stacked via a two-point interaction with it suitably designed external folding agent that carries a DAN unit and all ammonium group. In the second step, the interaction first occurs by the coordination of the ammonium group of the folding agent with the OE-6 segment, which in turn facilitates the C-T interaction of the DAN unit with the adjacent uncomplexed PDI units along the polymer chain, leading to an increase ill the slacking. Variations of several spectral features, during both UV-vis and NMR spectroscopic titrations, clearly reveal this novel two-step folding process.
Resumo:
In modern evolutionary divergence analysis the role of geological information extends beyond providing a timescale, to informing molecular rate variation across the tree. Here I consider the implications of this development. I use fossil calibrations to test the accuracy of models of molecular rate evolution for placental mammals, and reveal substantial misspecification associated with life history rate correlates. Adding further calibrations to reduce dating errors at specific nodes unfortunately tends to transfer underlying rate errors to adjacent branches. Thus, tight calibration across the tree is vital to buffer against rate model errors. I argue that this must include allowing maximum bounds to be tight when good fossil records permit, otherwise divergences deep in the tree will tend to be inflated by the interaction of rate errors and asymmetric confidence in minimum and maximum bounds. In the case of placental mammals I sought to reduce the potential for transferring calibration and rate model errors across the tree by focusing on well-supported calibrations with appropriately conservative maximum bounds. The resulting divergence estimates are younger than others published recently, and provide the long-anticipated molecular signature for the placental mammal radiation observed in the fossil record near the 66 Ma Cretaceous–Paleogene extinction event.
Resumo:
The C→A transformation of Pr2O3 has been examined. The transformation is sluggish and takes place at and above 750°C. C-Pr2O3 is oxidized at a lower temperature than the A-form and oxidation proceeds in two stages in both cases. A hydrate Pr 2O3 . H2O, formed by the interaction of C-Pr2O3 and water at relatively high temperature, is described and its behaviour compared with that of Pr(OH)3. The C-form undergoes hydration at 40°C while the A-form does not. All the observations have been explained in terms of the defect structure of C-Pr2O 3.
Resumo:
Interaction between forests and the atmosphere occurs by radiative and turbulent transport. The fluxes of energy and mass between surface and the atmosphere directly influence the properties of the lower atmosphere and in longer time scales the global climate. Boreal forest ecosystems are central in the global climate system, and its responses to human activities, because they are significant sources and sinks of greenhouse gases and of aerosol particles. The aim of the present work was to improve our understanding on the existing interplay between biologically active canopy, microenvironment and turbulent flow and quantify. In specific, the aim was to quantify the contribution of different canopy layers to whole forest fluxes. For this purpose, long-term micrometeorological and ecological measurements made in a Scots pine (Pinus sylvestris) forest at SMEAR II research station in Southern Finland were used. The properties of turbulent flow are strongly modified by the interaction between the canopy elements: momentum is efficiently absorbed in the upper layers of the canopy, mean wind speed and turbulence intensities decrease rapidly towards the forest floor and power spectra is modulated by spectral short-cut . In the relative open forest, diabatic stability above the canopy explained much of the changes in velocity statistics within the canopy except in strongly stable stratification. Large eddies, ranging from tens to hundred meters in size, were responsible for the major fraction of turbulent transport between a forest and the atmosphere. Because of this, the eddy-covariance (EC) method proved to be successful for measuring energy and mass exchange inside a forest canopy with exception of strongly stable conditions. Vertical variations of within canopy microclimate, light attenuation in particular, affect strongly the assimilation and transpiration rates. According to model simulations, assimilation rate decreases with height more rapidly than stomatal conductance (gs) and transpiration and, consequently, the vertical source-sink distributions for carbon dioxide (CO2) and water vapor (H2O) diverge. Upscaling from a shoot scale to canopy scale was found to be sensitive to chosen stomatal control description. The upscaled canopy level CO2 fluxes can vary as much as 15 % and H2O fluxes 30 % even if the gs models are calibrated against same leaf-level dataset. A pine forest has distinct overstory and understory layers, which both contribute significantly to canopy scale fluxes. The forest floor vegetation and soil accounted between 18 and 25 % of evapotranspiration and between 10 and 20 % of sensible heat exchange. Forest floor was also an important deposition surface for aerosol particles; between 10 and 35 % of dry deposition of particles within size range 10 30 nm occurred there. Because of the northern latitudes, seasonal cycle of climatic factors strongly influence the surface fluxes. Besides the seasonal constraints, partitioning of available energy to sensible and latent heat depends, through stomatal control, on the physiological state of the vegetation. In spring, available energy is consumed mainly as sensible heat and latent heat flux peaked about two months later, in July August. On the other hand, annual evapotranspiration remains rather stable over range of environmental conditions and thus any increase of accumulated radiation affects primarily the sensible heat exchange. Finally, autumn temperature had strong effect on ecosystem respiration but its influence on photosynthetic CO2 uptake was restricted by low radiation levels. Therefore, the projected autumn warming in the coming decades will presumably reduce the positive effects of earlier spring recovery in terms of carbon uptake potential of boreal forests.
Resumo:
In the markets-as-networks approach business networks are conceived as dynamic actor structures, giving focus to exchange relationships and actors’ capabilities to control and co-ordinate activities and resources. Researchers have shared an understanding that actors’ actions are crucial for the development of business networks and for network dynamics. However, researchers have mainly studied firms as business actors and excluded individuals, although both firms and individuals can be seen as business actors. This focus on firms as business actors has resulted in a paucity of research on human action and the exchange of intangible resources in business networks, e.g. social exchange between individuals in social networks. Consequently, the current conception of business networks fails to appreciate the richness of business actors, the human character of business action and the import of social action in business networks. The central assumption in this study is that business actors are multidimensional and that their specific constitution in any given situation is determined by human interaction in social networks. Multidimensionality is presented as a concept for exploring how business actors act in different situations and how actors simultaneously manage multiple identities: individual, organisational, professional, business and network identities. The study presents a model that describes the multidimensionality of actors in business networks and conceptualises the connection between social exchange and human action in business networks. Empirically the study explores the change that has taken place in pharmaceutical retailing in Finland during recent years. The phenomenon of emerging pharmacy networks is highly contemporary in the Nordic countries, where the traditional license-based pharmacy business is changing. The study analyses the development of two Finnish pharmacy chains, one integrated and one voluntary chain, and the network structures and dynamics in them. Social Network Analysis is applied to explore the social structures within the pharmacy networks. The study shows that emerging pharmacy networks are multifaceted phenomena where political, economic, social, cultural, and historical elements together contribute to the observed changes. Individuals have always been strongly present in the pharmacy business and the development of pharmacy networks provides an interesting example of human actors’ influence in the development of business networks. The dynamics or forces driving the network development can be linked to actors’ own economic and social motives for developing the business. The study highlights the central role of individuals and social networks in the development of the two studied pharmacy networks. The relation between individuals and social networks is reciprocal. The social context of every individual enables multidimensional business actors. The mix of various identities, both individual and collective identities, is an important part of network dynamics. Social networks in pharmacy networks create a platform for exchange and social action, and social networks enable and support business network development.
Resumo:
Tämän tutkielman tarkoituksena on määrittää kesämökkikäynnin virkistysarvo. Aihetta ei ole aikaisemmin tutkittu, vaikka kesämökkeily on merkittävä osa suomalaista elämää. Kesämökkikäynnin virkistysarvo tarkoittaa hyötyä, jonka yksilö saa kesämökillä virkistäytymisestä. Virkistäytyminen kesämökillä pitää sisällään kaiken kesämökillä ja sen ympäristössä tapahtuvan harrastamisen ja rentoutumisen. Koska ympäristö on tärkeässä osassa mökillä virkistäytymisessä, tässä tutkielmassa on lisäksi tarkoitus tutkia, kuinka mökkiympäristön ominaisuudet vaikuttavat virkistysarvoon. Tarkasteltavina ympäristön ominaisuuksina ovat virkistäytymisen estävät leväkukinnot ja mökin rannattomuus. Koska mökkeily toisaalta myös kuormittaa ympäristöä, tutkielmassa tutkitaan myös, kuinka sähköistys, ympäristöä kuormittava kesämökin ominaisuus, vaikuttaa virkistysarvoon. Virkistysarvo on markkinaton hyöty, joten sen määrittämiseen on käytettävä jotain markkinattomien hyödykkeiden arvottamismenetelmää. Tässä työssä arvottaminen tapahtuu matkakustannusmenetelmällä, jota käytetään yleisesti ympäristön tarjoamien virkistyspalveluiden taloudelliseen arvottamiseen. Kesämökkikäyntien kysyntää kuvaava matkakustannusmallin ekonometrinen mallintaminen suoritetaan negatiivisella binomimallilla. Tutkielman tulosten mukaan noin neljän päivän pituinen käynti sähköistetyllä kesämökillä, jossa on ranta eivätkä levät häiritse virkistäytymistä, tuottaa 167-205 euron suuruisen virkistyshyödyn. Virkistäytymisen estävät leväkukinnot laskevat arvoa 40 prosentilla ja mökin rannattomuus 45 prosentilla. Käynti sähköistetyllä mökillä tuottaa 3-5 prosenttia korkeamman virkistyshyödyn kuin käynti sähköistämättömällä mökillä. Suomessa kesän aikana tehtävien mökkikäyntien yhteenlaskettu virkistyshyöty on 430-530 miljoonaa, jos mökillä on ranta, jossa levistä ei ole haittaa. Häiritsevät leväkukinnot laskevat yhteenlaskettua virkistyshyötyä 30 miljoonalla ja rannattomuus 10-20 miljoonalla. Sähköistys nostaa yhteenlaskettua virkistyshyötyä 20-30 miljoonalla eurolla.
Resumo:
The high molecular weight aminoacyl-tRNA synthetase complex (the 24S complex) was isolated from rat liver by ultracentrifugation. The lysyl-tRNA synthetase (E.C. 6.1.1.6) was selectively dissociated by hydrophobic interaction chromatography on 1,6 diaminohexyl agarose followed by hydroxylapatite chromatography and DEAE chromatography. The lysyl-tRNA synthetase dissociated from the 24S synthetase complex was purified approximately to 2700 fold with 14% yield.
Resumo:
In daily life, rich experiences evolve in every environmental and social interaction. Because experience has a strong impact on how people behave, scholars in different fields are interested in understanding what constitutes an experience. Yet even if interest in conscious experience is on the increase, there is no consensus on how such experience should be studied. Whatever approach is taken, the subjective and psychologically multidimensional nature of experience should be respected. This study endeavours to understand and evaluate conscious experiences. First I intro-duce a theoretical approach to psychologically-based and content-oriented experience. In the experiential cycle presented here, classical psychology and orienting-environmental content are connected. This generic approach is applicable to any human-environment interaction. Here I apply the approach to entertainment virtual environments (VEs) such as digital games and develop a framework with the potential for studying experiences in VEs. The development of the methodological framework included subjective and objective data from experiences in the Cave Automatic Virtual Environment (CAVE) and with numerous digital games (N=2,414). The final framework consisted of fifteen factor-analytically formed subcomponents of the sense of presence, involvement and flow. Together, these show the multidimensional experiential profile of VEs. The results present general experiential laws of VEs and show that the interface of a VE is related to (physical) presence, which psychologically means attention, perception and the cognitively evaluated realness and spatiality of the VE. The narrative of the VE elicits (social) presence and involvement and affects emotional outcomes. Psychologically, these outcomes are related to social cognition, motivation and emotion. The mechanics of a VE affect the cognitive evaluations and emotional outcomes related to flow. In addition, at the very least, user background, prior experience and use context affect the experiential variation. VEs are part of many peoples lives and many different outcomes are related to them, such as enjoyment, learning and addiction, depending on who is making the evalua-tion. This makes VEs societally important and psychologically fruitful to study. The approach and framework presented here contribute to our understanding of experiences in general and VEs in particular. The research can provide VE developers with a state-of-the art method (www.eveqgp.fi) that can be utilized whenever new product and service concepts are designed, prototyped and tested.
Resumo:
Avoiding the loss of coherence of quantum mechanical states is an important prerequisite for quantum information processing. Dynamical decoupling (DD) is one of the most effective experimental methods for maintaining coherence, especially when one can access only the qubit system and not its environment (bath). It involves the application of pulses to the system whose net effect is a reversal of the system-environment interaction. In any real system, however, the environment is not static, and therefore the reversal of the system-environment interaction becomes imperfect if the spacing between refocusing pulses becomes comparable to or longer than the correlation time of the environment. The efficiency of the refocusing improves therefore if the spacing between the pulses is reduced. Here, we quantify the efficiency of different DD sequences in preserving different quantum states. We use C-13 nuclear spins as qubits and an environment of H-1 nuclear spins as the environment, which couples to the qubit via magnetic dipole-dipole couplings. Strong dipole-dipole couplings between the proton spins result in a rapidly fluctuating environment with a correlation time of the order of 100 mu s. Our experimental results show that short delays between the pulses yield better performance if they are compared with the bath correlation time. However, as the pulse spacing becomes shorter than the bath correlation time, an optimum is reached. For even shorter delays, the pulse imperfections dominate over the decoherence losses and cause the quantum state to decay.
Resumo:
Polymeric peroxides are equimolar alternating copolymers formed by the reaction of vinyl monomers with oxygen. Physicochemical studies on the microstructure and chain dynamics of poly(styrene peroxide) PSP were first carried out by Cais and Bovey. We have found that polyperoxides are formed as main intermediates in solid-propellant combustion by the interaction of the monomer and oxygen generated by the decomposition of the polymeric binder and the oxidizer ammonium perchlorate. The experimentally determined heat of degradation and that calculated from thermochemical considerations reveal that polyperoxides undergo highly exothermic primary degradation, the rate-controlling step being the O-O bond dissociation. A random-chain scission mechanism for the thermal degradation of polyperoxides has been proposed. The prediction of unusual exothermic degradation of polyperoxides has resulted in the discovery of an interesting new phenomenon of 'autopyrolysability' in polymers. Several new polyperoxides based on vinyl naphthalene have been synthesized. We have also found that PSP, in conjunction with amines, can be used as initiator at ambient temperature for the radical polymerization of vinyl monomers.
Resumo:
The regulation of eukaryotic gene transcription poses major challenges in terms of the innumerable protein factors required to ensure tissue or cell-type specificity. While this specificity is sought to be explained by the interaction of cis-acting DNA elements and thetrans-acting protein factor(s), considerable amount of degeneracy has been observed in this interaction. Immunoglobulin heavy chain gene expression in B cells and liver-specific gene expression are discussed as examples of this complexity in this article. Heterodimerization and post-translational modification of transcription factors and the organization of composite promoter elements are strategies by which diverse sets of genes can be regulated in a specific manner using a finite number of protein factors
Resumo:
The alkoxy species produced by the interaction of alcohols with Zn surfaces undergoes C-O bond scission at 150 K giving hydrocarbon species, but this transformation occurs even at 80 K when alcohol-oxygen mixtures are coadsorbed, due to the oxygen transients.
Resumo:
Nanocomposites of few-layer graphene with nanoparticles of CdSe and CdS have been synthesized by two different methods, one involving ultrasonication of a mixture of graphene and the chalcogenide nanoparticles, and another involving assembly at the organic-aqueous interface. The nanocomposites have been examined by electron microscopy, electronic absorption and photoluminescence spectroscopies as well as Raman spectroscopy. Electron microscopy reveals that the nanoparticles are dispersed on the graphene surface. Raman spectra show the presence of definitive electronic interaction between the nanoparticles and graphene depending on the capping agent. Photoluminescence spectra are markedly influenced by the interaction of the nanoparticles with the graphene surface, depending on the capping agent.
Resumo:
Nanoscale surface modification, by the interaction of sliding surfaces and mobile nanoparticles, is a critical parameter for controlling friction, wear and failure of surface structures. Here we demonstrate how nanoparticles form and interact in real-time at moving nanocontacts, with reciprocating wear tests imaged in situ at the nanoscale over > 300 cycles in a transmission electron microscope. Between sliding surfaces, friction-formed nanoparticles are observed with rolling, sliding and spinning motions, dependant on localised contact conditions and particle geometry. Over periods of many scratch cycles, nanoparticles dynamically agglomerate into elongated clusters, and dissociate into smaller particulates. We also show that the onset of rolling motion of these particles accompanies a reduction in measured friction. Introduction of nanoparticles with optimum shape and property can thus be used to control friction and wear in microdevices.