931 resultados para Crystal phase


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent and innovative method to include Ti into the columbite precursor has permitted to synthesize 0.9PMN-0.1PT powders with high homogeneity. The present work describes this methodology, named modified columbite method, showing that the reaction between MN(T)and PbO at 800 degrees C for 2 h results in perovskite single-phase. The crystal structure alterations in the columbite and perovskite phases obtained by this methodology and the effects of potassium doping were investigated by the Rietveld method. Changes in the powder morphology, density and weight loss during the sintering process were also studied. Conclusively, potassium does not affect significantly the perovskite amount, but reduces the particle and grain sizes. This dopant also changes the relaxor behavior of 0.9PMN-0.1 PT ceramic, reducing the dielectric loss and enhancing the diffuseness of the phase transition. (C) 2005 Published by Elsevier Ltd and Techna Gronp S.r.l.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach for studying photorefractive gratings in two-wave mixing experiments by a phase modulation technique is presented. The introduction of a large-amplitude, high-frequency sinusoidal phase modulation in one of the input beams blurs the interference pattern and provides powerful harmonic signals for accurate measurements of the grating diffraction efficiency eta and the output phase shift rho between the transmitted and diffracted waves. The blurring of the light fringes can be used to suppress the higher spatial harmonics of the grating, allowing a space-charge field with sinusoidal profile to be recorded. Although the presence of such a strong phase modulation affects the beam coupling in a rather complicated way, it is shown that for the special case of equal intensity input beams, the effect of the phase modulation on eta and rho is reduced to a weakening of the coupling strength. The potentialities of the technique are illustrated in a study of refractive-index waves excited by running interference patterns in a Bi12TiO20 crystal. Expressions for the diffraction efficiency and the output phase shift are derived and used to match numerically calculated curves to the experimental data. The theoretical model is supported by the very good data fitting and allows the computation of important material parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bottom-up methods to obtain nanocrystals usually result in metastable phases, even in processes carried out at room temperature or under soft annealing conditions. However, stable phases, often associated with anisotropic shapes, are obtained in only a few special cases. In this paper we report on the synthesis of two well-studied oxides-titanium and zirconium oxide-in the nanometric range, by a novel route based on the decomposition of peroxide complexes of the two metals under hydrothermal soft conditions, obtaining metastable and stable phases in both cases through transformation. High-resolution transmission electron microscopy analysis reveals the existence of typical defects relating to growth by the oriented attachment mechanism in the stable crystals. The results suggest that the mechanism is associated to the phase transformation of these structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of niobia addition on the phase formation and dielectric properties of Pb(Zr0.45Ti0.55)O-3 powder prepared from polymeric precursor was analyzed. The weight fraction and unit-cell volume of the tetragonal phase decreased, and the mass fraction of the rhombohedral phase increased, with increasing niobia concentration. The rhombohedral unit-cell volume increased up to 5 mol% of added Nb and then decreased. Small amounts of pyrochlore and tetragonal zirconia phases were observed in PZT powder with more than 10 mol% Nb. These results were interpreted as an indication that the Nb ion was substituted for the zirconium ion in the tetragonal phase. For sintered PZT samples at 1100 degrees C, no free-zirconia phase was observed. The dielectric constant increased with the niobia addition up to 5 mol% and decreased for higher concentrations. The Curie temperature decreased with niobia addition up to 10 mol% before the formation of pyrochlore phase. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zn7Sb2O12 is known to adopt an inverse spinel crystal structure, in which Zn2+ occupies the eight tetrahedral positions and Sb5+ and Zn2+ randomly occupy the 16 octahedral positions. Samples of Zn7-xNixSb2O12 (X = 0, 1, 2, 3, and 4) were synthesized using a modified polymeric precursor method, known as the Pechini method. The crystal structure of the powders was characterized by Rietveld refinement with X-ray diffraction data. The results show that for X = 0, 1, and 2 Ni substitutes for Zn2+ in the octahedral sites, and that for X = 3 and 4 it is assumed that Ni2+ replaces Zn2+ ions in both the octahedral and tetrahedral positions. It is also observed for x = 3 and 4 the formation of two spinel phases. (C) 2003 International Centre for Diffraction Data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of crystal structure refinements and phase quantification for samples of Co-doped lanthanum chromites with nominal composition LaCr(1-x)Co(x)O(3), for x=0.00, 0.10, 0.20, and 0.30, prepared by combustion synthesis are presented. The resulting powders were characterized by scanning electron microscopy and X-ray diffraction (XRD). The XRD patterns were obtained with Cu K alpha radiation for non-doped lanthanum chromite sample and additionally with Cr K alpha radiation for Co-doped lanthanum chromites samples, in order to enhance the signal from scattering. Rietveld analysis of XRD data showed that the studied samples presented the lanthanum chromite with an orthorhombic structure (Pnma), except for the composition with x=0.30, in which the space group was found to be R (3) over barc. (C) 2008 International Centre for Diffraction Data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water-dispersed magnetite nanoparticle synthesis from iron(II) chloride in dimethyl sulfoxide (DMSO)-water solution at different DMSO-water ratios in alkaline medium was reported. TEM and XRD results suggest a single-crystal formation with mean particle size in the range 4-27 nm. Magnetic nanoparticles are formed by the oxidative hydrolysis reaction from green rust species that leads to FeOOH formation, followed by autocatalysis of the adsorbed available Fe(II) on the FeOOH surfaces. The available hydroxyl groups seem to be dependent on the DMSO-water ratio due to strong molecular interactions presented by the solvent mixture. Goethite phase on the magnetite surface was observed by XRD data only for sample synthesized in the absence of DMSO. In addition, cyclic voltammetry with carbon paste electroactive electrode (CV-CPEE) results reveal two reduction peaks near 0 and +400 mV associated with the presence of iron(III) in different chemical environments related to the surface composition of magnetite nanoparticles. The peak near +400 mV is related to a passivate thin layer surface such as goethite on the magnetite nanoparticle, assigned to the intensive hydrolysis reaction due to strong interactions between DMSO-water molecules in the initial solvent mixture that result in a hydroxyl group excess in the medium. Pure magnetite phase was only observed in the samples prepared at 30% (30W) and 80% (80W) water in DMSO in agreement with the structured molecular solvent cluster formation. The goethite phase present on the, magnetite nanoparticle surface like a thin passivate layer only was detectable using CV-CPEE, which is a very efficient, cheap, and powerful tool for surface characterization, and it is able to determine the passivate oxyhydroxide or oxide thin layer presence on the nanoparticle surface.