946 resultados para Covariance
Resumo:
The issue of smoothing in kriging has been addressed either by estimation or simulation. The solution via estimation calls for postprocessing kriging estimates in order to correct the smoothing effect. Stochastic simulation provides equiprobable images presenting no smoothing and reproducing the covariance model. Consequently, these images reproduce both the sample histogram and the sample semivariogram. However, there is still a problem, which is the lack of local accuracy of simulated images. In this paper, a postprocessing algorithm for correcting the smoothing effect of ordinary kriging estimates is compared with sequential Gaussian simulation realizations. Based on samples drawn from exhaustive data sets, the postprocessing algorithm is shown to be superior to any individual simulation realization yet, at the expense of providing one deterministic estimate of the random function.
Resumo:
Canalizing genes possess such broad regulatory power, and their action sweeps across a such a wide swath of processes that the full set of affected genes are not highly correlated under normal conditions. When not active, the controlling gene will not be predictable to any significant degree by its subject genes, either alone or in groups, since their behavior will be highly varied relative to the inactive controlling gene. When the controlling gene is active, its behavior is not well predicted by any one of its targets, but can be very well predicted by groups of genes under its control. To investigate this question, we introduce in this paper the concept of intrinsically multivariate predictive (IMP) genes, and present a mathematical study of IMP in the context of binary genes with respect to the coefficient of determination (CoD), which measures the predictive power of a set of genes with respect to a target gene. A set of predictor genes is said to be IMP for a target gene if all properly contained subsets of the predictor set are bad predictors of the target but the full predictor set predicts the target with great accuracy. We show that logic of prediction, predictive power, covariance between predictors, and the entropy of the joint probability distribution of the predictors jointly affect the appearance of IMP genes. In particular, we show that high-predictive power, small covariance among predictors, a large entropy of the joint probability distribution of predictors, and certain logics, such as XOR in the 2-predictor case, are factors that favor the appearance of IMP. The IMP concept is applied to characterize the behavior of the gene DUSP1, which exhibits control over a central, process-integrating signaling pathway, thereby providing preliminary evidence that IMP can be used as a criterion for discovery of canalizing genes.
Resumo:
In this paper, a novel statistical test is introduced to compare two locally stationary time series. The proposed approach is a Wald test considering time-varying autoregressive modeling and function projections in adequate spaces. The covariance structure of the innovations may be also time- varying. In order to obtain function estimators for the time- varying autoregressive parameters, we consider function expansions in splines and wavelet bases. Simulation studies provide evidence that the proposed test has a good performance. We also assess its usefulness when applied to a financial time series.
Resumo:
Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Often, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we derive a Bartlett correction to such a test, and also to a test obtained from a modified profile likelihood function. Our results generalize those in [Zucker, D.M., Lieberman, O., Manor, O., 2000. Improved small sample inference in the mixed linear model: Bartlett correction and adjusted likelihood. Journal of the Royal Statistical Society B, 62,827-838] by allowing the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow for random effects nonlinear covariance matrix structure. We report simulation results which show that the proposed tests display superior finite sample behavior relative to the standard likelihood ratio test. An application is also presented and discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Modeling of spatial dependence structure, concerning geoestatistics approach, is an indispensable tool for fixing parameters that define this structure, applied on interpolation of values in places that are not sampled, by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations on sampled data. Thus, this trial aimed at using diagnostics techniques of local influence in spatial linear Gaussians models, applied at geoestatistics in order to evaluate sensitivity of maximum likelihood estimators and restrict maximum likelihood to small perturbations in these data. So, studies with simulated and experimental data were performed. Those results, obtained from the study of real data, allowed us to conclude that the presence of atypical values among the sampled data can have a strong influence on thematic maps, changing, therefore, the spatial dependence. The application of diagnostics techniques of local influence should be part of any geoestatistic analysis, ensuring that the information from thematic maps has better quality and can be used with greater security by farmers.
Resumo:
This paper derives the second-order biases Of maximum likelihood estimates from a multivariate normal model where the mean vector and the covariance matrix have parameters in common. We show that the second order bias can always be obtained by means of ordinary weighted least-squares regressions. We conduct simulation studies which indicate that the bias correction scheme yields nearly unbiased estimators. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This thesis contributes to the heuristic optimization of the p-median problem and Swedish population redistribution. The p-median model is the most representative model in the location analysis. When facilities are located to a population geographically distributed in Q demand points, the p-median model systematically considers all the demand points such that each demand point will have an effect on the decision of the location. However, a series of questions arise. How do we measure the distances? Does the number of facilities to be located have a strong impact on the result? What scale of the network is suitable? How good is our solution? We have scrutinized a lot of issues like those. The reason why we are interested in those questions is that there are a lot of uncertainties in the solutions. We cannot guarantee our solution is good enough for making decisions. The technique of heuristic optimization is formulated in the thesis. Swedish population redistribution is examined by a spatio-temporal covariance model. A descriptive analysis is not always enough to describe the moving effects from the neighbouring population. A correlation or a covariance analysis is more explicit to show the tendencies. Similarly, the optimization technique of the parameter estimation is required and is executed in the frame of statistical modeling.
Resumo:
Objetivo: Avaliar os efeitos de um programa de exercício aeróbio sobre o condicionamento cardiorrespiratório em gestantes hígidas, de baixo risco, com sobrepeso. Métodos: 92 mulheres gestantes com sobrepeso (índice de massa corporal 26-31kg/m2), idade ≥ 20 anos, idade gestacional ≤ 20 semanas, com ausência de diabetes e hipertensão, foram alocadas aleatoriamente para realizar exercício aeróbio três vezes por semana com uma hora de duração ou para realizar sessões de relaxamento no grupo controle. Foram realizados dois testes de exercício submáximo em esteira, utilizando protocolo de rampa na entrada do estudo e outro teste após 12 semanas. Resultados: Em teste de exercício submáximo 12 semanas após randomização, o consumo de oxigênio (VO2) no limiar anaeróbio aumentou 17% (± 3) no grupo intervenção enquanto reduziu 16% (± 3) no grupo controle, de modo que após 12 semanas de exercício ajustado através da análise de covariância pelo o VO2 no limiar na linha de base, idade gestacional e idade materna foi de 2,68ml/kg/min (IC 95% 1,32-4,03) maior, P = 0,002. Conclusão: Exercício aeróbio realizado em gestantes com sobrepeso produz um aumento no limiar anaeróbio, sobrepondo os efeitos negativos da gestação sobre o condicionamento cardiorrespiratório em mulheres com estilo de vida sedentário.
Resumo:
Em cenas naturais, ocorrem com certa freqüência classes espectralmente muito similares, isto é, os vetores média são muito próximos. Em situações como esta, dados de baixa dimensionalidade (LandSat-TM, Spot) não permitem uma classificação acurada da cena. Por outro lado, sabe-se que dados em alta dimensionalidade [FUK 90] tornam possível a separação destas classes, desde que as matrizes covariância sejam suficientemente distintas. Neste caso, o problema de natureza prática que surge é o da estimação dos parâmetros que caracterizam a distribuição de cada classe. Na medida em que a dimensionalidade dos dados cresce, aumenta o número de parâmetros a serem estimados, especialmente na matriz covariância. Contudo, é sabido que, no mundo real, a quantidade de amostras de treinamento disponíveis, é freqüentemente muito limitada, ocasionando problemas na estimação dos parâmetros necessários ao classificador, degradando portanto a acurácia do processo de classificação, na medida em que a dimensionalidade dos dados aumenta. O Efeito de Hughes, como é chamado este fenômeno, já é bem conhecido no meio científico, e estudos vêm sendo realizados com o objetivo de mitigar este efeito. Entre as alternativas propostas com a finalidade de mitigar o Efeito de Hughes, encontram-se as técnicas de regularização da matriz covariância. Deste modo, técnicas de regularização para a estimação da matriz covariância das classes, tornam-se um tópico interessante de estudo, bem como o comportamento destas técnicas em ambientes de dados de imagens digitais de alta dimensionalidade em sensoriamento remoto, como por exemplo, os dados fornecidos pelo sensor AVIRIS. Neste estudo, é feita uma contextualização em sensoriamento remoto, descrito o sistema sensor AVIRIS, os princípios da análise discriminante linear (LDA), quadrática (QDA) e regularizada (RDA) são apresentados, bem como os experimentos práticos dos métodos, usando dados reais do sensor. Os resultados mostram que, com um número limitado de amostras de treinamento, as técnicas de regularização da matriz covariância foram eficientes em reduzir o Efeito de Hughes. Quanto à acurácia, em alguns casos o modelo quadrático continua sendo o melhor, apesar do Efeito de Hughes, e em outros casos o método de regularização é superior, além de suavizar este efeito. Esta dissertação está organizada da seguinte maneira: No primeiro capítulo é feita uma introdução aos temas: sensoriamento remoto (radiação eletromagnética, espectro eletromagnético, bandas espectrais, assinatura espectral), são também descritos os conceitos, funcionamento do sensor hiperespectral AVIRIS, e os conceitos básicos de reconhecimento de padrões e da abordagem estatística. No segundo capítulo, é feita uma revisão bibliográfica sobre os problemas associados à dimensionalidade dos dados, à descrição das técnicas paramétricas citadas anteriormente, aos métodos de QDA, LDA e RDA, e testes realizados com outros tipos de dados e seus resultados.O terceiro capítulo versa sobre a metodologia que será utilizada nos dados hiperespectrais disponíveis. O quarto capítulo apresenta os testes e experimentos da Análise Discriminante Regularizada (RDA) em imagens hiperespectrais obtidos pelo sensor AVIRIS. No quinto capítulo são apresentados as conclusões e análise final. A contribuição científica deste estudo, relaciona-se à utilização de métodos de regularização da matriz covariância, originalmente propostos por Friedman [FRI 89] para classificação de dados em alta dimensionalidade (dados sintéticos, dados de enologia), para o caso especifico de dados de sensoriamento remoto em alta dimensionalidade (imagens hiperespectrais). A conclusão principal desta dissertação é que o método RDA é útil no processo de classificação de imagens com dados em alta dimensionalidade e classes com características espectrais muito próximas.
Resumo:
Multi-factor models constitute a useful tool to explain cross-sectional covariance in equities returns. We propose in this paper the use of irregularly spaced returns in the multi-factor model estimation and provide an empirical example with the 389 most liquid equities in the Brazilian Market. The market index shows itself significant to explain equity returns while the US$/Brazilian Real exchange rate and the Brazilian standard interest rate does not. This example shows the usefulness of the estimation method in further using the model to fill in missing values and to provide interval forecasts.
Resumo:
We examine bivariate extensions of Aït-Sahalia’s approach to the estimation of univariate diffusions. Our message is that extending his idea to a bivariate setting is not straightforward. In higher dimensions, as opposed to the univariate case, the elements of the Itô and Fokker-Planck representations do not coincide; and, even imposing sensible assumptions on the marginal drifts and volatilities is not sufficient to obtain direct generalisations. We develop exploratory estimation and testing procedures, by parametrizing the drifts of both component processes and setting restrictions on the terms of either the Itô or the Fokker-Planck covariance matrices. This may lead to highly nonlinear ordinary differential equations, where the definition of boundary conditions is crucial. For the methods developed, the Fokker-Planck representation seems more tractable than the Itô’s. Questions for further research include the design of regularity conditions on the time series dependence in the data, the kernels actually used and the bandwidths, to obtain asymptotic properties for the estimators proposed. A particular case seems promising: “causal bivariate models” in which only one of the diffusions contributes to the volatility of the other. Hedging strategies which estimate separately the univariate diffusions at stake may thus be improved.
Resumo:
O principal objetivo deste estudo foi investigar a possível relação entre o fracasso escolar, entendido como anos de repetência, e o autoconceito de alunos da 8a. série do 1º grau da rede oficial de escolas de Campo Grande, no Município do Rio de Janeiro. Este trabalho foi realizado com dois grupos de alunos, sendo que um grupo havia tido experiência de fracasso escolar, isto é, repetência, e o outro grupo não. Para verificar a relação, repetência e autoconceito, foi utilizada a "Escala de Autoconceito Tennessee", desenvolvida por H. Fitts, traduzida e reduzida por Corona em 1977. A escala consta de 30 itens com 5 alternativas de respostas para cada item (tipo Likertl, sua amplitude é de 150 pontos, sendo o maior escore possível 150 (30x51 o menor 30 (30x1), indicando respectivamente uma desestruturação do autoconceito em termos de supervalorização e uma desestruturação por infra-aloração. O confronto das médias de autoconceito de grupos de alunos com diferentes frequências de repetência e sem repetência mostrou que a repetência de serie covaria significativamente com o autoconceito dos alunos estudados, concomitantemente, com a classe social. Apesar de os resultados do estudo não serem conclusivos, ainda assim consideramos válida sua realização, na medida em que fornece mais esclarecimentos a um dos mais graves problemas da escola de 1º grau no Brasil, que é o da repetência.
Resumo:
O presente trabalho descreve o estudo comparativo entre dois métodos de ensino aplicados à disciplina de Fisiologia Cárdio-respiratória do curso de Graduação em Medicina, no Centro de Ciências Médicas da Universidade Federal do Rio de Janeiro. Os métodos comparados foram: a auto-instrução e o método tradicional. A formulação do problema, o seu contexto e fundamentação teórica são descritos no início do trabalho, que prossegue' presentando o planejamento do curso com o emprego de ambos os métodos. Em seguida, descreve-se a metodologia utilizada no estudo experimental. Foi adotado o esquema de grupos equivalentes com pós-teste, sendo que o grupo experimental e os grupos de controle' foram escolhidos aleatoriamente. A hipótese experimental visava comprovar que a nota ' final', correspondente à verificação da aprendizagem na disciplina, apresenta diferença significativa entre os alunos que foram submetidos ao método de auto-instrução, comparativamente à nota dos alunos que foram submetidos ao método tradicional. O tratamento estatístico utilizado foi a análise da covariância com o nível de significância de 0,05. O resultado da análise da covariância não foi significativo, considerando a média final do aluno no teste-critério, assim como as notas parciais nas cinco semanas do curso. Uma análise de regressão por passos foi feita, visando controlar algumas variáveis pudessem intervir na diferença entre os grupos experimental e de controle. Entre as variáveis escolhidas, pode-se afirmar que é preditora da nota do aluno na disciplina Fisiologia Cárdio-respiratória, a nota anterior do aluno na disciplina Biofísica. Concluindo, sugere-se novas pesquisas no campo, principalmente relativas a tempo efetivamente gasto pelo professor e pelo aluno, utilizando o método de auto-instrução, assim como' medidas de retenção da aprendizagem.
Resumo:
Seguros de carteiras proporcionam aos gestores limitar o risco de downside sem renunciar a movimentos de upside. Nesta dissertação, propomos um arcabouço de otimização de seguro de carteira a partir de um modelo híbrido frequentista-Bayesiano com uso de derivativos. Obtemos a distribuição conjunta de retornos regulares através de uma abordagem estatística frequentista, uma vez removidos os outliers da amostra. A distribuição conjunta dos retornos extremos, por sua vez, é modelada através de Redes Bayesianas, cuja topologia contempla os eventos que o gestor considera crítico ao desempenho da carteira. Unindo as distribuições de retornos regulares e extremos, simulamos cenários futuros para a carteira. O seguro é, então, otimizado através do algoritmo Evolução Diferencial. Mostramos uma aplicação passo a passo para uma carteira comprada em ações do Ibovespa, utilizando dados de mercado entre 2008 e 2012.
Resumo:
Esta dissertação concentra-se nos processos estocásticos espaciais definidos em um reticulado, os chamados modelos do tipo Cliff & Ord. Minha contribuição nesta tese consiste em utilizar aproximações de Edgeworth e saddlepoint para investigar as propriedades em amostras finitas do teste para detectar a presença de dependência espacial em modelos SAR (autoregressivo espacial), e propor uma nova classe de modelos econométricos espaciais na qual os parâmetros que afetam a estrutura da média são distintos dos parâmetros presentes na estrutura da variância do processo. Isto permite uma interpretação mais clara dos parâmetros do modelo, além de generalizar uma proposta de taxonomia feita por Anselin (2003). Eu proponho um estimador para os parâmetros do modelo e derivo a distribuição assintótica do estimador. O modelo sugerido na dissertação fornece uma interpretação interessante ao modelo SARAR, bastante comum na literatura. A investigação das propriedades em amostras finitas dos testes expande com relação a literatura permitindo que a matriz de vizinhança do processo espacial seja uma função não-linear do parâmetro de dependência espacial. A utilização de aproximações ao invés de simulações (mais comum na literatura), permite uma maneira fácil de comparar as propriedades dos testes com diferentes matrizes de vizinhança e corrigir o tamanho ao comparar a potência dos testes. Eu obtenho teste invariante ótimo que é também localmente uniformemente mais potente (LUMPI). Construo o envelope de potência para o teste LUMPI e mostro que ele é virtualmente UMP, pois a potência do teste está muito próxima ao envelope (considerando as estruturas espaciais definidas na dissertação). Eu sugiro um procedimento prático para construir um teste que tem boa potência em uma gama de situações onde talvez o teste LUMPI não tenha boas propriedades. Eu concluo que a potência do teste aumenta com o tamanho da amostra e com o parâmetro de dependência espacial (o que está de acordo com a literatura). Entretanto, disputo a visão consensual que a potência do teste diminui a medida que a matriz de vizinhança fica mais densa. Isto reflete um erro de medida comum na literatura, pois a distância estatística entre a hipótese nula e a alternativa varia muito com a estrutura da matriz. Fazendo a correção, concluo que a potência do teste aumenta com a distância da alternativa à nula, como esperado.