942 resultados para Aerosol deposition
Resumo:
There is no consensus on whether the first mineralized layer, the hyaline layer, that is juxtaposed to root dentine is a variety of dentine or cementum or even a tissue of epithelial origin. Some suggest that there is no intermediate tissue between the acellular extrinsic fibre cementum (AEFC) and the root dentine. Here, to study hyaline layer formation and mineralization we examined by transmission electron microscopy the early stages of root development in upper molars from 10 to 13 day old Wistar rats. In addition to conventionally processed material, undemineralized and unstained sections were examined, which showed the deposition of fine mineral crystals in contact with the mineralized surface of root dentine. Early mineralization of the hyaline layer occurred in the region of the inner basement membrane, which persisted between the inner cellular layer of Hertwig's epithelial root sheath and the outer mineralized root dentine. When the root sheath began its fragment, collagen fibrils From the developing periodontal ligament began to insert into the mineralising hyaline layer, which was 0.5-0.8 mum wide. As the fragmentation of the root sheath HERS increased, more collagen fibrils appeared intermingled with the mineralising hyaline layer. In more advanced stages, when the hyaline layer had become fully mineralized and the formation of the AEFC began, the hyaline layer could no longer be identified. Thus, the hyaline layer is clearly discernible at early stages of periodontal development. Subsequently, it is masked by intermingling of cementum and dentine and therefore it is not possible to detect it in the formed roots of rat molars. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Multi-walled carbon nanotubes (MWNT) were produced by chemical vapor deposition using yttria-stabilized zirconia/nickel (YSZ/Ni) catalysts. The catalysts were obtained by a liquid mixture technique that resulted in fine dispersed nanoparticles of NiO supported in the YSZ matrix. High quality MWNT having smooth walls, few defects, and low amounts of by-products such as amorphous carbon were obtained, even from catalysts with large Ni concentrations (> 50 wt.%). By adjusting the experimental parameters, such as flux of the carbon precursor (ethylene) and Ni concentration, both the MWNT morphology and the process yield could be controlled. The resulting YSZ/Ni/MWNT composites can be interesting due to their mixed ionic-electronic transport properties, which could be useful in electrochemical applications.
Resumo:
Electrically conductive LaNiO3-delta (LNO) thin films with typical thickness of 200 nm were deposited on Si (111) substrates by a chemical solution deposition method and heat-treated in air at 700 degreesC. Structural, morphological, and electrical properties of the LNO thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field-emission scanning electron microscopy (FEG-SEM), and electrical resistivity rho(T). The thin films have a very flat surface and no droplet was found on their surfaces. The average grain size observed by AFM and FEG-SEM was approximately 100 nm in excellent agreement with XRD data. The rho(T) data showed that these thin films display a good metallic character in a large range of temperature. These results suggest the use of this conductive layer as electrode in the integration of microelectronic devices. (C) 2003 Elsevier B.V. All rights reserved.
SrBi2Ta2O9 ferroelectric thick films prepared by electrophoretic deposition using aqueous suspension
Resumo:
SrBi2Ta2O9 ferroelectric thick films were prepared by electrophoretic deposition (EPD). For that, ceramic powders were prepared by chemical method in order to obtain compounds with chemical homogeneity. The polymeric precursor method was used for the synthesis of the SrBi2Ta2O9 powder. The crystallographic structure of the powder was examined by X-ray diffraction, and the surface area was determined by single point BET adsorption. The 0.03 vol.% suspension was formed by dispersing the powder in water using two different polymers as dispersants: an ester polyphosphate (C213) and an ammonium polyacrilate (Darvan 821-A). It was investigated the influence of the different dispersants in the surface properties of the powder by zeta potential measurements. The films were deposited on platinum-coated alumina and Pt/Ti/SiO2/Si substrates by a 4 mA constant current, for 10 min, using two parallel electrodes placed at a separation distance of 3 min in the suspension. Several cycles of deposition-drying of the deposit were carried out until reaching the desired thickness. After thermal treatment at temperatures ranging from 700 to 1000 degreesC, the films were characterized by X-ray diffraction and scanning electron microscopy for the microstructure observation. (C) 2003 Elsevier Ltd. All rights reserved.
Electrical characterization of SnO2 : Sb ultrathin films obtained by controlled thickness deposition
Resumo:
A representative study is reported on the electrical properties of SnO2: Sb. ultrathin films (thickness of 40-70 nm) produced by a deposition method based on aqueous colloidal suspensions of 3-5 nm crystalline oxides. The results revealed the films' electrical behavior in a range of 10-300 K, showing a strong dependence on dopant incorporation, with minimum resistivity values in 10 mol % of Sb content. All the samples displayed semiconductor behavior, but the transport mechanism showed a strong dependence on thickness, making it difficult to fit it to well-known models. In thicker films, the mechanism proved to be an intermediary system, with thermally activated and hopping features. Electron hopping was estimated in the range of 0.4-1.9 nm, i.e., in the same order as the particle size. (c) 2007 American Institute of Physics.
Resumo:
The chemical composition, as well as the sources contributing to rainwater chemistry have been determined at Skukuza, in the Kruger National Park, South Africa. Major inorganic and organic ions were determined in 93 rainwater samples collected using an automated wet-only sampler from July 1999 to June 2002. The results indicate that the rain is acidic and the averaged precipitation pH was 4.72. This acidity results from a mixture of mineral acids (82%, of which 50% is H2SO4) and organic acids (18%). Most of the H2SO4 component can be attributed to the emissions of sulphur dioxide from the industrial region on the Highveld. The wet deposition of S and N is 5.9 kgS.ha(-1).yr(-1) and 2.8 kgN.ha(-1).yr(-1), respectively. The N deposition was mainly in the form of NH4+. Terrigenous, sea salt component, nitrogenous and anthropogenic pollutants have been identified as potential sources of chemical components in rainwater. The results are compared to observations from other African regions.
Resumo:
The laser ablation method was used for depositing porous nanocrystalline indium-tin oxide thin films for gas sensing applications. Samples were prepared at different pressures using three gases (O-2, 0.8N(2):0.2O(2), N-2) and heat-treated in the same atmosphere used for the ablation process. X-ray diffraction results show that the films are not oriented and the grain sizes are in the range between 15 and 40 nm. The grains are round shaped for all samples and the porosity of the films increases with the deposition pressure. The degree of sintering after heat treatment increases for lower oxygen concentrations, generating fractures on the surface of the samples. Film thicknesses are in the range of I pm for all gases as determined from scanning electron microscopy cross-sections. Electrical resistance varies between 36.3 ohm for the film made at 10 Pa pressure in N-2 until 9.35 x 10(7) ohm for the film made at 100 Pa in O-2. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Sugar cane burning in Brazil causes remarkable amounts of organic compounds to be emitted amongst which the polycyclic aromatic hydrocarbons (PAHs) represent serious health hazards. Therefore, 24-h aerosol samples (< 10 mum aerodynamic diameter) were collected in Araraquara city (São Paulo state) during the harvest season using a Hi-Vol sampler. PAHs were recovered using an Accelerated Solvent Extractor and analyzed by low-pressure gas chromatography-ion trap mass spectrometry (LP-GC-IT-MS). The fully automated extraction process was performed in less than 25 min with a solvent consumption of approximately 20 ml. The use of a deactivated 0.6 m x 0. 10 mm i.d. restrictor coupled to a 10 m wide-bore analytical column allowed most of the 16 PAHs in EPA's priority list to be identified and quantified in only 13 min. Concentrations of PAHs in Nraraquara aerosols ranged between 0.5 and 8.6 ng m(-3). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Indium-tin oxide nanostructures were deposited by excimer laser ablation in a nitrogen atmosphere using catalyst-free oxidized silicon substrates at 500 degrees C. Up to 1 mbar, nanowires grew by the vapor-liquid-solid (VLS) mechanism, with the amount of liquid material decreasing as the deposition pressure increased. The nanowires present the single-crystalline cubic bixbyite structure, oriented < 100 >. For the highest pressure used, pyramids were formed and no sign of liquid material could be observed, indicating that these structures grew by a vapor-solid mechanism. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
BiFeO3 (BFO) thin films were fabricated on Pt(111)/Ti/SiO2/Si substrates by using a polymeric precursor solution under appropriate crystallization conditions. The capacitance dependence on voltage is strongly nonlinear, confirming the ferroelectric properties of the films resulting from the domain switching. The leakage current density increases with annealing temperature. The polarization electric field curves could be obtained in BFO films annealed at 500 degrees C, free of secondary phases. X-ray photoelectron spectroscopy spectra of films annealed at 500 degrees C indicated that the oxidation state of Fe was purely 3+, demonstrating that our films possess stable chemical configurations. (c) 2007 American Institute of Physics.
Resumo:
The technological interest in transparent conductive oxide films (TCOs) has motivated several works in processing techniques, in order to obtain adequate routes to application. In this way, this work describes a new route to obtain antimony-doped tin oxide (ATO) films, based in colloidal dispersions of oxide nanocrystals. The nanoparticles were obtained by a hydrolisis method, using SnCl2 and SbCl3 in ethanolic solutions. The residual halides were removed by dyalisis, obtaining a limpid and transparent colloidal suspension. By this, the method offers the advantage of producing ultrathin films without organic contaminants. This route was employed to produce films with 5, 10, 14, and 18 mol% Sb doping, with thickness ranging from 40 to 70 nm. The physical characterization of the samples showed a uniform layer deposition, resulting in good packing density and high transmittance. A preliminar electrical study confirmed the low electrical resistivity even in the ultrathin films, in such level similar of reported data. The method described is similar in some aspects to layer-by-layer (LbL) techniques, allowing fine control of thickness and interesting properties for ultrathin films, however, with low cost when compared to similar routes.