982 resultados para topological insulator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A metal-insulator transition in a two-dimensional semimetal based on HgTe quantum wells is discovered. The transition is induced by a magnetic field applied parallel to the plane of the quantum well. The threshold behavior of the activation energy as a function of the magnetic-field strength and an abrupt reduction of the Hall resistance at the onset of the transition suggest that the observed effect originates from the formation of an excitonic insulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767672]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical resistivity measurements were performed on p-type Pb1-xEuxTe films with Eu content x = 4%, 5%, 6%, 8%, and 9%. The well-known metal-insulator transition that occurs around 5% at room temperature due to the introduction of Eu is observed, and we used the differential activation energy method to study the conduction mechanisms present in these samples. In the insulator regime (x>6%), we found that band conduction is the dominating conduction mechanism for high temperatures with carriers excitation between the valence band and the 4f levels originated from the Eu atoms. We also verified that mix conduction dominates the low temperatures region. Samples with x = 4% and 5% present a temperature dependent metal insulator transition and we found that this dependence can be related to the relation between the thermal energy k(B)T and the activation energy Delta epsilon(a). The physical description obtained through the activation energy analysis gives a new insight about the conduction mechanisms in insulating p-type Pb1-xEuxTe films and also shed some light over the influence of the 4f levels on the transport process in the insulator region. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729813]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze reproducing kernel Hilbert spaces of positive definite kernels on a topological space X being either first countable or locally compact. The results include versions of Mercer's theorem and theorems on the embedding of these spaces into spaces of continuous and square integrable functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a two-parameter family of Z(2) gauge theories on a lattice discretization T(M) of a three-manifold M and its relation to topological field theories. Familiar models such as the spin-gauge model are curves on a parameter space Gamma. We show that there is a region Gamma(0) subset of Gamma where the partition function and the expectation value h < W-R(gamma)> i of the Wilson loop can be exactly computed. Depending on the point of Gamma(0), the model behaves as topological or quasi-topological. The partition function is, up to a scaling factor, a topological number of M. The Wilson loop on the other hand, does not depend on the topology of gamma. However, for a subset of Gamma(0), < W-R(gamma)> depends on the size of gamma and follows a discrete version of an area law. At the zero temperature limit, the spin-gauge model approaches the topological and the quasi-topological regions depending on the sign of the coupling constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background The organization of the connectivity between mammalian cortical areas has become a major subject of study, because of its important role in scaffolding the macroscopic aspects of animal behavior and intelligence. In this study we present a computational reconstruction approach to the problem of network organization, by considering the topological and spatial features of each area in the primate cerebral cortex as subsidy for the reconstruction of the global cortical network connectivity. Starting with all areas being disconnected, pairs of areas with similar sets of features are linked together, in an attempt to recover the original network structure. Results Inferring primate cortical connectivity from the properties of the nodes, remarkably good reconstructions of the global network organization could be obtained, with the topological features allowing slightly superior accuracy to the spatial ones. Analogous reconstruction attempts for the C. elegans neuronal network resulted in substantially poorer recovery, indicating that cortical area interconnections are relatively stronger related to the considered topological and spatial properties than neuronal projections in the nematode. Conclusion The close relationship between area-based features and global connectivity may hint on developmental rules and constraints for cortical networks. Particularly, differences between the predictions from topological and spatial properties, together with the poorer recovery resulting from spatial properties, indicate that the organization of cortical networks is not entirely determined by spatial constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High quality KMo4O6 single crystals with tetragonal structure (space group P4/mbm) have been prepared by fused salt electrolysis. The crystals were studied by scanning electron microscopy (SEM), X-ray diffractometry, electrical resistivity, and magnetization measurements. X-ray powder diffraction patterns and SEM have given some information on the growth of single crystals. Electrical resistivity as a function of temperature shows that the KMo4O6 compound is a bad metal with resistivity change of approximately 30% in the temperature range from 2 to 300K. A metal-insulator transition (MIT), observed at approximately 110K, has been also confirmed for this material. Magnetization as a function of temperature agrees with previous report, however a magnetic ordering has been observed in M(H) curves in the whole temperature range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Singularities of robot manipulators have been intensely studied in the last decades by researchers of many fields. Serial singularities produce some local loss of dexterity of the manipulator, therefore it might be desirable to search for singularityfree trajectories in the jointspace. On the other hand, parallel singularities are very dangerous for parallel manipulators, for they may provoke the local loss of platform control, and jeopardize the structural integrity of links or actuators. It is therefore utterly important to avoid parallel singularities, while operating a parallel machine. Furthermore, there might be some configurations of a parallel manipulators that are allowed by the constraints, but nevertheless are unreachable by any feasible path. The present work proposes a numerical procedure based upon Morse theory, an important branch of differential topology. Such procedure counts and identify the singularity-free regions that are cut by the singularity locus out of the configuration space, and the disjoint regions composing the configuration space of a parallel manipulator. Moreover, given any two configurations of a manipulator, a feasible or a singularity-free path connecting them can always be found, or it can be proved that none exists. Examples of applications to 3R and 6R serial manipulators, to 3UPS and 3UPU parallel wrists, to 3UPU parallel translational manipulators, and to 3RRR planar manipulators are reported in the work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progresses of electron devices integration have proceeded for more than 40 years following the well–known Moore’s law, which states that the transistors density on chip doubles every 24 months. This trend has been possible due to the downsizing of the MOSFET dimensions (scaling); however, new issues and new challenges are arising, and the conventional ”bulk” architecture is becoming inadequate in order to face them. In order to overcome the limitations related to conventional structures, the researchers community is preparing different solutions, that need to be assessed. Possible solutions currently under scrutiny are represented by: • devices incorporating materials with properties different from those of silicon, for the channel and the source/drain regions; • new architectures as Silicon–On–Insulator (SOI) transistors: the body thickness of Ultra-Thin-Body SOI devices is a new design parameter, and it permits to keep under control Short–Channel–Effects without adopting high doping level in the channel. Among the solutions proposed in order to overcome the difficulties related to scaling, we can highlight heterojunctions at the channel edge, obtained by adopting for the source/drain regions materials with band–gap different from that of the channel material. This solution allows to increase the injection velocity of the particles travelling from the source into the channel, and therefore increase the performance of the transistor in terms of provided drain current. The first part of this thesis work addresses the use of heterojunctions in SOI transistors: chapter 3 outlines the basics of the heterojunctions theory and the adoption of such approach in older technologies as the heterojunction–bipolar–transistors; moreover the modifications introduced in the Monte Carlo code in order to simulate conduction band discontinuities are described, and the simulations performed on unidimensional simplified structures in order to validate them as well. Chapter 4 presents the results obtained from the Monte Carlo simulations performed on double–gate SOI transistors featuring conduction band offsets between the source and drain regions and the channel. In particular, attention has been focused on the drain current and to internal quantities as inversion charge, potential energy and carrier velocities. Both graded and abrupt discontinuities have been considered. The scaling of devices dimensions and the adoption of innovative architectures have consequences on the power dissipation as well. In SOI technologies the channel is thermally insulated from the underlying substrate by a SiO2 buried–oxide layer; this SiO2 layer features a thermal conductivity that is two orders of magnitude lower than the silicon one, and it impedes the dissipation of the heat generated in the active region. Moreover, the thermal conductivity of thin semiconductor films is much lower than that of silicon bulk, due to phonon confinement and boundary scattering. All these aspects cause severe self–heating effects, that detrimentally impact the carrier mobility and therefore the saturation drive current for high–performance transistors; as a consequence, thermal device design is becoming a fundamental part of integrated circuit engineering. The second part of this thesis discusses the problem of self–heating in SOI transistors. Chapter 5 describes the causes of heat generation and dissipation in SOI devices, and it provides a brief overview on the methods that have been proposed in order to model these phenomena. In order to understand how this problem impacts the performance of different SOI architectures, three–dimensional electro–thermal simulations have been applied to the analysis of SHE in planar single and double–gate SOI transistors as well as FinFET, featuring the same isothermal electrical characteristics. In chapter 6 the same simulation approach is extensively employed to study the impact of SHE on the performance of a FinFET representative of the high–performance transistor of the 45 nm technology node. Its effects on the ON–current, the maximum temperatures reached inside the device and the thermal resistance associated to the device itself, as well as the dependence of SHE on the main geometrical parameters have been analyzed. Furthermore, the consequences on self–heating of technological solutions such as raised S/D extensions regions or reduction of fin height are explored as well. Finally, conclusions are drawn in chapter 7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ALICE experiment at the LHC has been designed to cope with the experimental conditions and observables of a Quark Gluon Plasma reaction. One of the main assets of the ALICE experiment with respect to the other LHC experiments is the particle identification. The large Time-Of-Flight (TOF) detector is the main particle identification detector of the ALICE experiment. The overall time resolution, better that 80 ps, allows the particle identification over a large momentum range (up to 2.5 GeV/c for pi/K and 4 GeV/c for K/p). The TOF makes use of the Multi-gap Resistive Plate Chamber (MRPC), a detector with high efficiency, fast response and intrinsic time resoltion better than 40 ps. The TOF detector embeds a highly-segmented trigger system that exploits the fast rise time and the relatively low noise of the MRPC strips, in order to identify several event topologies. This work aims to provide detailed description of the TOF trigger system. The results achieved in the 2009 cosmic-ray run at CERN are presented to show the performances and readiness of TOF trigger system. The proposed trigger configuration for the proton-proton and Pb-Pb beams are detailed as well with estimates of the efficiencies and purity samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is currently widely accepted that the understanding of complex cell functions depends on an integrated network theoretical approach and not on an isolated view of the different molecular agents. Aim of this thesis was the examination of topological properties that mirror known biological aspects by depicting the human protein network with methods from graph- and network theory. The presented network is a partial human interactome of 9222 proteins and 36324 interactions, consisting of single interactions reliably extracted from peer-reviewed scientific publications. In general, one can focus on intra- or intermodular characteristics, where a functional module is defined as "a discrete entity whose function is separable from those of other modules". It is found that the presented human network is also scale-free and hierarchically organised, as shown for yeast networks before. The interactome also exhibits proteins with high betweenness and low connectivity which are biologically analyzed and interpreted here as shuttling proteins between organelles (e.g. ER to Golgi, internal ER protein translocation, peroxisomal import, nuclear pores import/export) for the first time. As an optimisation for finding proteins that connect modules, a new method is developed here based on proteins located between highly clustered regions, rather than regarding highly connected regions. As a proof of principle, the Mediator complex is found in first place, the prime example for a connector complex. Focusing on intramodular aspects, the measurement of k-clique communities discriminates overlapping modules very well. Twenty of the largest identified modules are analysed in detail and annotated to known biological structures (e.g. proteasome, the NFκB-, TGF-β complex). Additionally, two large and highly interconnected modules for signal transducer and transcription factor proteins are revealed, separated by known shuttling proteins. These proteins yield also the highest number of redundant shortcuts (by calculating the skeleton), exhibit the highest numbers of interactions and might constitute highly interconnected but spatially separated rich-clubs either for signal transduction or for transcription factors. This design principle allows manifold regulatory events for signal transduction and enables a high diversity of transcription events in the nucleus by a limited set of proteins. Altogether, biological aspects are mirrored by pure topological features, leading to a new view and to new methods that assist the annotation of proteins to biological functions, structures and subcellular localisations. As the human protein network is one of the most complex networks at all, these results will be fruitful for other fields of network theory and will help understanding complex network functions in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi si è studiato un corpus di importanti testi della letteratura Italiana utilizzando la teoria dei network. Le misure topologiche tipiche dei network sono state calcolate sui testi letterari, poi sono state studiate le loro distribuzioni e i loro valori medi, per capire quali di esse possono distinguere un testo reale da sue modificazioni. Inoltre si è osservato come tutti i testi presentino due importanti leggi statistiche: la legge di Zipf e quella di Heaps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit untersuchen wir mittels zeitaufgelöster Abbildungen die Gigahertz-Dynamik von magnetischen Skyrmionen, um die Bewegungsgleichungen für diese Quasiteilchen zu bestimmen. Um dieses Ziel zu erreichen haben wir zunächst ein CoB/Pt Schichtsystem entwickelt, das starke senkrechte magnetische Anisotropie mit einer besonders geringen Rauigkeit der Energielandschaft verbindet. Diese Eigenschaften sind für das repetitive dynamische Abbildungsverfahren unerlässlich. In einem zweiten Schritt haben wir das Probendesign optimiert und so weiterentwickelt, dass eine Beobachtung der Skyrmionenbewegung mit einer Auflösung von besser als 3 nm möglich wurde. Aufgrund dieser Verbesserungen ist es uns gelungen, die Trajektorie eines Skyrmionen aufzuzeichnen. Diese Bewegung ist eine Superposition von zwei Drehbewegungen, einer im Uhrzeigersinn und einer gegen läufigen. Aus der Existenz dieser zwei Moden lässt sich schließen, dass Skyrmionen träge Quasiteilchen sind, und aus den Frequenzen können wir einen Wert für die träge Masse ableiten. Es stellt sich heraus, dass die Masse von Skyrmion fünfmal größer ist als von existierenden Theorien vorhergesagt. Die Masse wird folglich durch einen neuartigen Mechanismus bestimmt, der sich aus der räumlichen Beschränkung der Skyrmionen ergibt, welche sich direkt aus der Topologie bleitenrnlässt.