956 resultados para stock order flow model
Resumo:
Model predictive control (MPC) has often been referred to in literature as a potential method for more efficient control of building heating systems. Though a significant performance improvement can be achieved with an MPC strategy, the complexity introduced to the commissioning of the system is often prohibitive. Models are required which can capture the thermodynamic properties of the building with sufficient accuracy for meaningful predictions to be made. Furthermore, a large number of tuning weights may need to be determined to achieve a desired performance. For MPC to become a practicable alternative, these issues must be addressed. Acknowledging the impact of the external environment as well as the interaction of occupants on the thermal behaviour of the building, in this work, techniques have been developed for deriving building models from data in which large, unmeasured disturbances are present. A spatio-temporal filtering process was introduced to determine estimates of the disturbances from measured data, which were then incorporated with metaheuristic search techniques to derive high-order simulation models, capable of replicating the thermal dynamics of a building. While a high-order simulation model allowed for control strategies to be analysed and compared, low-order models were required for use within the MPC strategy itself. The disturbance estimation techniques were adapted for use with system-identification methods to derive such models. MPC formulations were then derived to enable a more straightforward commissioning process and implemented in a validated simulation platform. A prioritised-objective strategy was developed which allowed for the tuning parameters typically associated with an MPC cost function to be omitted from the formulation by separation of the conflicting requirements of comfort satisfaction and energy reduction within a lexicographic framework. The improved ability of the formulation to be set-up and reconfigured in faulted conditions was shown.
Resumo:
Abstract Where photosynthetic eukaryotic organisms survived during the Snowball Earth events of the Neoproterozoic remains unclear. Our previous research tested whether a narrow arm of the ocean, similar to the modern Red Sea, could have been a refugium for photosynthetic eukaryotes during the Snowball Earth. Using an analytical ice-flow model, we demonstrated that a limited range of climate conditions could restrict sea-glacier flow sufficiently to allow an arm of the sea to remain partially free from sea-glacier penetration, a necessary condition for it to act as a refugium. Here we expand on the previous study, using a numerical ice-flow model, with the ability to capture additional physics, to calculate sea-glacier penetration, and to explore the effect of a channel with a narrow entrance. The climatic conditions are made selfconsistent by linking sublimation rate to surface temperature. As expected, the narrow entrance allows parts of the nearly enclosed sea to remain safe from sea-glacier penetration for a wider range of climate conditions.
Resumo:
The idea behind the project is to develop a methodology for analyzing and developing techniques for the diagnosis and the prediction of the state of charge and health of lithium-ion batteries for automotive applications. For lithium-ion batteries, residual functionality is measured in terms of state of health; however, this value cannot be directly associated with a measurable value, so it must be estimated. The development of the algorithms is based on the identification of the causes of battery degradation, in order to model and predict the trend. Therefore, models have been developed that are able to predict the electrical, thermal and aging behavior. In addition to the model, it was necessary to develop algorithms capable of monitoring the state of the battery, online and offline. This was possible with the use of algorithms based on Kalman filters, which allow the estimation of the system status in real time. Through machine learning algorithms, which allow offline analysis of battery deterioration using a statistical approach, it is possible to analyze information from the entire fleet of vehicles. Both systems work in synergy in order to achieve the best performance. Validation was performed with laboratory tests on different batteries and under different conditions. The development of the model allowed to reduce the time of the experimental tests. Some specific phenomena were tested in the laboratory, and the other cases were artificially generated.
Resumo:
Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y=0) are reported in sNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.
Resumo:
We re-examine the dynamics of returns and dividend growth within the present-value framework of stock prices. We find that the finite sample order of integration of returns is approximately equal to the order of integration of the first-differenced price-dividend ratio. As such, the traditional return forecasting regressions based on the price-dividend ratio are invalid. Moreover, the nonstationary long memory behaviour of the price-dividend ratio induces antipersistence in returns. This suggests that expected returns should be modelled as an AFIRMA process and we show this improves the forecast ability of the present-value model in-sample and out-of-sample.
Resumo:
Prediction of the stock market valuation is a common interest to all market participants. Theoretically sound market valuation can be achieved by discounting future earnings of equities to present. Competing valuation models seek to find variables that affect the equity market valuation in a way that the market valuation can be explained and also variables that could be used to predict market valuation. In this paper we test the contemporaneous relationship between stock prices, forward looking earnings and long-term government bond yields. We test this so-called Fed model in a long- and short-term time series analysis. In order to test the dynamics of the relationship, we use the cointegration framework. The data used in this study spans over four decades of various market conditions between 1964-2007, using data from United States. The empirical results of our analysis do not give support for the Fed model. We are able to show that the long-term government bonds do not play statistically significant role in this relationship. The effect of forward earnings yield on the stock market prices is significant and thus we suggest the use of standard valuation ratios when trying to predict the future paths of equity prices. Also, changes in the long-term government bond yields do not have significant short-term impact on stock prices.
Resumo:
Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.
Resumo:
The problem of state estimation occurs in many applications of fluid flow. For example, to produce a reliable weather forecast it is essential to find the best possible estimate of the true state of the atmosphere. To find this best estimate a nonlinear least squares problem has to be solved subject to dynamical system constraints. Usually this is solved iteratively by an approximate Gauss–Newton method where the underlying discrete linear system is in general unstable. In this paper we propose a new method for deriving low order approximations to the problem based on a recently developed model reduction method for unstable systems. To illustrate the theoretical results, numerical experiments are performed using a two-dimensional Eady model – a simple model of baroclinic instability, which is the dominant mechanism for the growth of storms at mid-latitudes. It is a suitable test model to show the benefit that may be obtained by using model reduction techniques to approximate unstable systems within the state estimation problem.
Resumo:
An analytical model of orographic gravity wave drag due to sheared flow past elliptical mountains is developed. The model extends the domain of applicability of the well-known Phillips model to wind profiles that vary relatively slowly in the vertical, so that they may be treated using a WKB approximation. The model illustrates how linear processes associated with wind profile shear and curvature affect the drag force exerted by the airflow on mountains, and how it is crucial to extend the WKB approximation to second order in the small perturbation parameter for these effects to be taken into account. For the simplest wind profiles, the normalized drag depends only on the Richardson number, Ri, of the flow at the surface and on the aspect ratio, γ, of the mountain. For a linear wind profile, the drag decreases as Ri decreases, and this variation is faster when the wind is across the mountain than when it is along the mountain. For a wind that rotates with height maintaining its magnitude, the drag generally increases as Ri decreases, by an amount depending on γ and on the incidence angle. The results from WKB theory are compared with exact linear results and also with results from a non-hydrostatic nonlinear numerical model, showing in general encouraging agreement, down to values of Ri of order one.
Resumo:
fit the context of normalized variable formulation (NVF) of Leonard and total variation diminishing (TVD) constraints of Harten. this paper presents an extension of it previous work by the authors for solving unsteady incompressible flow problems. The main contributions of the paper are threefold. First, it presents the results of the development and implementation of a bounded high order upwind adaptative QUICKEST scheme in the 3D robust code (Freeflow), for the numerical solution of the full incompressible Navier-Stokes equations. Second, it reports numerical simulation results for 1D hock tube problem, 2D impinging jet and 2D/3D broken clam flows. Furthermore, these results are compared with existing analytical and experimental data. And third, it presents the application of the numerical method for solving 3D free surface flow problems. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved,
Resumo:
Esse trabalho é uma aplicação do modelo intertemporal de apreçamento de ativos desenvolvido por Campbell (1993) e Campbell e Vuolteenaho (2004) para as carteiras de Fama-French 2x3 brasileiras no period de janeiro de 2003 a abril de 2012 e para as carteiras de Fama-French 5x5 americanas em diferentes períodos. As varíaveis sugeridas por Campbell e Vuolteenaho (2004) para prever os excessos de retorno do mercado acionário americano no period de 1929 a 2001 mostraram-se também bons preditores de excesso de retorno para o mercado brasileiro no período recente, com exceção da inclinação da estrutura a termo das taxas de juros. Entretanto, mostramos que um aumento no small stock value spread indica maior excesso de retorno no futuro, comportamento que não é coerente com a explicação para o prêmio de valor sugerida pelo modelo intertemporal. Ainda, utilizando os resíduos do VAR preditivo para definir o risco de choques de fluxo de caixa e de choques nas taxas de desconto das carteiras de teste, verificamos que o modelo intertemporal resultante não explica adequadamente os retornos observados. Para o mercado norte-americano, concluímos que a abilidade das variáveis propostas para explicar os excessos de retorno do mercado varia no tempo. O sucesso de Campbell e Vuolteenaho (2004) em explicar o prêmio de valor para o mercado norte-americano na amostra de 1963 a 2001 é resultado da especificação do VAR na amostra completa, pois mostramos que nenhuma das varíaveis é um preditor de retorno estatisticamente significante nessa sub-amostra.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents a comprehensive methodology for the reduction of analytical or numerical stochastic models characterized by uncertain input parameters or boundary conditions. The technique, based on the Polynomial Chaos Expansion (PCE) theory, represents a versatile solution to solve direct or inverse problems related to propagation of uncertainty. The potentiality of the methodology is assessed investigating different applicative contexts related to groundwater flow and transport scenarios, such as global sensitivity analysis, risk analysis and model calibration. This is achieved by implementing a numerical code, developed in the MATLAB environment, presented here in its main features and tested with literature examples. The procedure has been conceived under flexibility and efficiency criteria in order to ensure its adaptability to different fields of engineering; it has been applied to different case studies related to flow and transport in porous media. Each application is associated with innovative elements such as (i) new analytical formulations describing motion and displacement of non-Newtonian fluids in porous media, (ii) application of global sensitivity analysis to a high-complexity numerical model inspired by a real case of risk of radionuclide migration in the subsurface environment, and (iii) development of a novel sensitivity-based strategy for parameter calibration and experiment design in laboratory scale tracer transport.
Resumo:
Fast-flowing ice streams discharge most of the ice from the interior of the Antarctic Ice Sheet coastward. Understanding how their tributary organisation is governed and evolves is essential for developing reliable models of the ice sheet's response to climate change. Despite much research on ice-stream mechanics, this problem is unsolved, because the complexity of flow within and across the tributary networks has hardly been interrogated. Here I present the first map of planimetric flow convergence across the ice sheet, calculated from satellite measurements of ice surface velocity, and use it to explore this complexity. The convergence map of Antarctica elucidates how ice-stream tributaries draw ice from the interior. It also reveals curvilinear zones of convergence along lateral shear margins of streaming, and abundant convergence ripples associated with nonlinear ice rheology and changes in bed topography and friction. Flow convergence on ice-stream tributaries and their feeding zones is markedly uneven, and interspersed with divergence at distances of the order of kilometres. For individual drainage basins as well as the ice sheet as a whole, the range of convergence and divergence decreases systematically with flow speed, implying that fast flow cannot converge or diverge as much as slow flow. I therefore deduce that flow in ice-stream networks is subject to mechanical regulation that limits flow-orthonormal strain rates. These properties and the gridded data of convergence and flow-orthonormal strain rate in this archive provide targets for ice- sheet simulations and motivate more research into the origin and dynamics of tributarization.
Resumo:
A two-dimensional finite element model of current flow in the front surface of a PV cell is presented. In order to validate this model we perform an experimental test. Later, particular attention is paid to the effects of non-uniform illumination in the finger direction which is typical in a linear concentrator system. Fill factor, open circuit voltage and efficiency are shown to decrease with increasing degree of non-uniform illumination. It is shown that these detrimental effects can be mitigated significantly by reoptimization of the number of front surface metallization fingers to suit the degree of non-uniformity. The behavior of current flow in the front surface of a cell operating at open circuit voltage under non-uniform illumination is discussed in detail.