900 resultados para mismatch negativity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method is demonstrated to be effective in reducing mismatch-induced tensile stress and suppressing the formation of cracks by inserting InAlGaN interlayers during the growth of GaN upon Si (1 1 1) substrate. Compared with GaN film without quaternary interlayer, GaN layer grown on InAlGaN compliant layers shows a five times brighter integrated PL intensity and a (0 0 0 2) High-resolution X-ray diffraction (HRXRD) curve width of 18 arcmin. Its chi(min), derived from Rutherford backscattering spectrometry (RBS), is about 2.0%, which means that the crystalline quality of this layer is very good. Quaternary InAlGaN layers, which are used as buffer layers firstly, can play a compliant role to endure the large mismatch-induced stress and reduce cracks during the growth of GaN epitaxy. The mechanisms leading to crack density reduction are investigated and results show that the phase immiscibility and the weak In-N bond make interlayer to offer tenability in the lattice parameters and release the thermal stress. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A ZnO layer was grown by metalorganic chemical vapor deposition (MOCVD) on a sapphire (0 0 0 1) substrate. The perpendicular and parallel elastic strain of the ZnO epilayer, e(perpendicular to) = 0.19%, e(parallel to) = -0.29%, respectively, were derived by using the combination of Rutherford backscattering (RBS)/channeling and X-ray diffraction (XRD). The ratio vertical bar e(parallel to)/ e(perpendicular to)vertical bar = 1.5 indicates that ZnO layer is much stiffer in the a-axis direction than in the c-axis direction. By using RBS/C, the depth dependent elastic strain was deduced. The strain is higher at the depth close to the interface and decreases towards the surface. The negative tetragonal distortion was explained by considering the lattice mismatch and thermal mismatch in ZnO thin film. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal entanglement in a two-qutrit system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called "negativity". It is found that the thermal entanglement is present and evolvements symmetrically between both ferromagnetic and antiferromagnetic exchange couplings with the temperature. Moreover the critical temperature at which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entanglement significantly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal entanglement in a two-qubit Spin-1 system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called "negativity". It is found that the thermal entanglement exists and is symmetric for both ferromagnetic and antiferromagnetic exchange couplings. Moreover, the critical temperature at which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entanglement significantly. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crack-free In0.08Al0.25Ga0.67N quaternary films, with and without thick (> 1.5 mum) high-temperature-GaN (HTGaN) interlayer, have been grown on Si(1 1 1) substrates by a low-pressure metalorganic chemical vapor deposition (MOCVD) system. Mole fractions of In and Al in quaternary alloy layers are determined by Energy dispersive spectroscopy (EDS) and Rutherford backscattering spectrometry (RBS), which are recorded as similar to8% and similar to25-27%, respectively. High-resolution X-ray diffraction (HRXRD) and room temperature photoluminescence (RT-PL) results evidence the film's single crystal structure and the existence of local In- and/or Al-rich regions. Compared with GaN film grwon on Si(1 1 1) substrate, no crack is observed in the quaternary ones. Two explanations are proposed. First, mismatch-induced strain is relaxed significantly due to gradual changes of In concentration. Second, the weak In-N bond is likely to break when the sample is cooled down to the room temperature, which is expected to favor the releasing of thermal stress. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GaN epilayers have been deposited on silicon-on-insulator (SOI) and bulk silicon substrates. The stress transition thickness and the initial compressive stress of a GaN epilayer on the SOI substrate are larger than those on the bulk silicon substrate, as shown in in situ stress measurement results. It is mainly due to the difference of the three-dimensional island density and the threading dislocation density in the GaN layer. It can increase the compressive stress in the initial stage of growth of the GaN layer, and helps to offset the tensile stress generated by the lattice mismatch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, an n-type Si1-xGex/Ge (x >= 0.85) quantum cascade (QC) structure utilizing a deep Ge quantum well for electrons at the Gamma point is proposed. Based on linear interpolation, a conduction band offset at the Gamma point in a Si1-xGex/Ge ( x >= 0.85) heterostructure is presented, which is suitable for designing a QC laser. This approach has the advantages of a large conduction band offset at the Gamma point, a low lattice mismatch between the Si1-xGex/Ge ( x >= 0.85) active layers and the Si1-yGey ( y > x) virtual substrate, a small electron effective mass in the Gamma band, simple conduction energy band structures and a simple phonon scattering mechanism in the Ge quantum well. The theory predicts that if high-energy electrons are continuously injected into the Gamma band, a quasi-equilibrium distribution of electrons between the Gamma and L bands can be reached and held, i.e., electrons with a certain density will be kept in the Gamma band. This result is supported by the intervalley scattering experiments. In n-type Si1-xGex/Ge ( x >= 0.85) QC structures, population inversion between the laser's upper and lower levels is demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new AlGaN/AlN/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded AlGaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high Al composition AlGaN barrier. The high 2DEG mobility of 1806 cm(2)/Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5 mu m x 5 mu m are attributed to the improvement of interfacial and crystal quality by employing the step-graded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5 Omega/square, with a good resistance uniformity of 0.68%, is also obtained across the 50 mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/mm and a maximum drain current density of 800 mA/mm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phase transition between thermodynamically stable hexagonal wurtzite (h-WZ) gallium nitride (GaN) and metastable cubic zinc-blende (c-ZB) GaN during growth by radio-frequency planar magnetron sputtering is studied. GaN films grown on substrates with lower mismatches tend to have a h-WZ structure, but when grown on substrates with higher mismatches, a c-ZB structure is preferred. GaN films grown under high nitrogen pressure also tend to have a h-WZ structure, whereas a c-ZB structure is preferred when grown under low nitrogen pressure. In addition, low target-power growth not only helps to improve hexagonal GaN (h-GaN) crystalline quality at high nitrogen pressure on low-mismatch substrates, but also enhances cubic GaN (c-GaN) quality at low nitrogen pressure on high-mismatch substrates. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural property of InN films grown on Ga-face GaN layers by metal-organic chemical vapor deposition has been studied by high-resolution x-ray diffraction. The mosaic tilt and twist are found to be strongly dependent on the surface lateral grain size. The twist decreases with increasing grain size and finally approaches to a constant level. On the other hand, the mosaic tilt increases substantially when the grain size becomes large enough and exceeds the width of step terraces on the GaN surface, showing an important mechanism for the defect generation in the InN/GaN system with large out-of-plane lattice mismatch. (c) 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called 'negativity'. We strictly show that for any temperature the entanglement is symmetric with respect to zero magnetic field. The behavior of negativity is presented for four different cases. We find that the entanglement may be enhanced under a nonuniform magnetic field. Because there is not any necessary and sufficient condition for quantum separability in systems of dimension 3 circle times 3, our results are qualitative, not quantitative. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system by applying the concept of negativity. It is found that the nonlinear couplings favor the thermal entanglement creating. Only when the nonlinear couplings vertical bar K vertical bar are larger than a certain critical value does the entanglement exist. The dependence of the thermal entanglement in this system on the magnetic field and temperature is also presented. The critical magnetic field increases with the increasing nonlinear couplings constant vertical bar K vertical bar. And for a fixed nonlinear couplings constant, the critical temperature is independent of the magnetic field B. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange interaction under a magnetic field in an arbitrary direction is investigated. Negativity, the measurement of entanglement is calculated. We find that for any temperature the evolvement of negativity is symmetric with respect to magnetic field. The behavior of negativity is presented for four different cases. The results show that for different temperature; different magnetic field give maximum entanglement. Both the parallel and antiparallel magnetic field cases are investigated qualitatively (not quantitatively) in detail, we find that the entanglement may be enhanced under an antiparallel magnetic field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transport properties of two-dimensional electron gas (2DEG) are crucial to metamorphic high-electron-mobility transistors (MM-HEMT). We have investigated the variations of subband electron mobility and concentration versus temperature from Shubnikov-de Hass oscillations., and variable temperature Hall measurements. The results indicate that the electrical performance is the best when the In content is 0.65 in the channel for MM-HEMT. When the In content exceeds 0.65, a large lattice mismatch will cause dislocations and result in the decrease of mobility and the fall of performance in materials and devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By optimizing the molecule beam epitaxy growth condition, the quality of quantum cascade (QC) material has greatly been improved. The spectrum of double x-ray diffraction indicates that the interface between the constituent layers is very smooth, the lattice mismatch between the epilayer and the substrate is less than 0.1%, and the periodicity fluctuation of the active region is not more than 4.2%. The QC laser with the emission wavelength of about 5.1 mum is operated at the threshold of 0.73 kA/cm(2) at liquid nitrogen temperature with the repetition rate of 10kHz and at a duty cycle of 1%. Meanwhile, the performance of the laser can be improved with suitable post process techniques such as the metallic ohmic contact technology.