882 resultados para agent-based simulation
Resumo:
Az adócsalásnak egy olyan modellcsaládját vizsgáljuk, ahol az egykulcsos adó kizárólag a közjavakat finanszírozza. Két megközelítés összehasonlítására összpontosítunk. Az elsőben minden dolgozó jövedelme azonos, és ebből minden évben annyit vall be, amennyi maximalizálja a nála maradó jövedelemből fedezhető fogyasztás nyújtotta hasznosság és a jövedelembevallásból fakadó hasznosság összegét. A második hasznosság három tényező szorzata: a dolgozó exogén adómorálja, a környezetében előző évben megfigyelt átlagos jövedelembevallás és saját bevallásából fakadó endogén hasznossága. A második megközelítésben az ágensek egyszerű heurisztikus szabályok szerint cselekszenek. Míg az optimalizáló modellben hagyományos Laffer-görbékkel találkozunk, addig a heurisztikán alapuló modellekben (lineárisan) növekvő Laffer-görbék jönnek létre. E különbség oka, hogy a heurisztikán alapuló modellben egy sajátos viselkedésfajta jelentkezik: számos ágens ingatag helyzetbe kerül, amelyben altruizmus és önzés között ingadozik. ________ The authors study a family of models of tax evasion, where a flat-rate tax only finances the provision of public goods and audits and wage differences are ne-glected. The paper focuses on comparing two modelling approaches. The first is based on optimizing agents, endowed with social preferences, their utility being the sum of private consumption and moral utility. The second approach involves agents acting according to simple heuristics. While the traditionally shaped Laffer curves are encountered in the optimizing model, the heuristics models exhibit (linearly) increasing Laffer curves. This difference is related to a peculiar type of behaviour: within the agent-based approach lurk a number of agents in a moral state of limbo, alternating between altruism and selfishness.
Resumo:
A közgazdaságtanban az ágensalapú modellezés egyik alkalmazási területe a makro ökonómia. Ebben a tanulmányban néhány népszerű megtakarítási szabály létét feltételezve adaptív-evolúciós megközelítésben endogén módon próbálunk következtetni e szabályok relatív életképességére. Három különböző típusú ágenst vezetünk be: egy prudens, egy rövidlátó és egy, a permanensjövedelem-elméletnek megfelelően működőt. Rendkívül erős szelekciós nyomás mellett a prudens típus egyértelműen kiszorítja a másik kettőt. A második legéletképesebbnek a rövidlátó típus tűnik, de már közepes szelekciós nyomásnál sem tűnik el egyik típus sem. Szokásos tőkehatékonyság mellett a prudens típus túlzott beruházási tendenciát visz a gazdaságba, és a gazdaság az aranykori megtakarítási rátánál magasabbat ér el. A hitelkorlátok oldása még nagyobb mértékű túlzott beruházáshoz vezethet, a hitelek mennyiségének növekedése mellett a tőketulajdonosok mintegy "kizsákmányoltatják" magukat azokkal, akiknek nincs tőkejövedelmük. A hosszú távú átlagos fogyasztás szempontjából a három típus kiegyensúlyozott aránya adja a legjobb eredményt, ugyanakkor ez jóval nagyobb ingadozással jár, mint amikor csak prudens típusú háztartások léteznek. ____ Agent-based modelling techniques have been employed for some time in macroeconomics. This paper tests some popular saving rules in an adaptive-evolutionary context of looking at their relative survival values. The three types are prudent, short-sighted, and responsive to the permanent-income hypothesis. It is found that where selection pressure is very high, only the prudent type persists. The second most resilient seems to be the short-sighted type, but all three coexist even at medium levels of selection pressure. When the efficiency of capital approaches the level usually assumed in macroeconomics, the prudent type drives the economy towards excessive accumulation of capital, i. e. a long-term savings rate that exceeds the golden rule. If credit constraints are relaxed, this tendency strengthens as credit grows and capital-owners seem to allow themselves to be exploited" by workers. From the angle of average consumption, the best outcome is obtained from a random distribution of types, although this is accompanied by higher volatility.
Resumo:
A Mediation System utilizes a central security mediator that is primarily concerned with securing the internal structure of the Mediation System. The current problem is that clients are unable to have authority and administrative rights over the security of their data during a transaction. In addition, this Mediation System is unsuited in presenting a metric that measures the level of confidence of security access rights. This creates a black-box perspective from the client towards the Mediation System and also gives no assurance to these clients that they have assigned the proper security access rights that reflect the current environment of the mediation system. This dissertation presents a Collaborative Information System (CIS) that uses an agent based approach to encapsulate collaborative information and security policies within the Mediation System which are under the control of the clients of the Mediation System. In conjunction with the CIS's Stochastic Security Framework it is possible to take a probabilistic approach in modeling the security access rights of a collaboration transaction. The research results showed that it is feasible to construct a Mediation System utilizing agents and stochastic equations to establish an environment where the client has authority and administrative control in assigning security access rights to their collaborative data that can establish a metric that measures the level of confidence of these assigned rights.
Resumo:
The principal effluent in the oil industry is the produced water, which is commonly associated to the produced oil. It presents a pronounced volume of production and it can be reflected on the environment and society, if its discharge is unappropriated. Therefore, it is indispensable a valuable careful to establish and maintain its management. The traditional treatment of produced water, usualy includes both tecniques, flocculation and flotation. At flocculation processes, there are traditional floculant agents that aren’t well specified by tecnichal information tables and still expensive. As for the flotation process, it’s the step in which is possible to separate the suspended particles in the effluent. The dissolved air flotation (DAF) is a technique that has been consolidating economically and environmentally, presenting great reliability when compared with other processes. The DAF is presented as a process widely used in various fields of water and wastewater treatment around the globe. In this regard, this study was aimed to evaluate the potential of an alternative natural flocculant agent based on Moringa oleifera to reduce the amount of oil and grease (TOG) in produced water from the oil industry by the method of flocculation/DAF. the natural flocculant agent was evaluated by its efficacy, as well as its efficiency when compared with two commercial flocculant agents normally used by the petroleum industry. The experiments were conducted following an experimental design and the overall efficiencies for all flocculants were treated through statistical calculation based on the use of STATISTICA software version 10.0. Therefore, contour surfaces were obtained from the experimental design and were interpreted in terms of the response variable removal efficiency TOG (total oil and greases). The plan still allowed to obtain mathematical models for calculating the response variable in the studied conditions. Commercial flocculants showed similar behavior, with an average overall efficiency of 90% for oil removal, however it is the economical analysis the decisive factor to choose one of these flocculant agents to the process. The natural alternative flocculant agent based on Moringa oleifera showed lower separation efficiency than those of commercials one (average 70%), on the other hand this flocculant causes less environmental impacts and it´s less expensive
Resumo:
The European CloudSME project that incorporated 24 European SMEs, besides five academic partners, has finished its funded phase in March 2016. This presentation will provide a summary of the results of the project, and will analyze the challenges and differences when developing “SME Gateways”, when compared to “Science Gateways”. CloudSME started in 2013 with the aim to develop a cloud-based simulation platform for manufacturing and engineering SMEs. The project was based around industry use-cases, five of which were incorporated in the project from the start, and seven additional ones that were added as an outcome of an open call in January 2015. CloudSME utilized science gateway related technologies, such as the commercial CloudBroker Platform and the WS-PGRADE/gUSE Gateway Framework that were developed in the preceding SCI-BUS project. As most important outcome, the project successfully implemented 12 industry quality demonstrators that showcase how SMEs in the manufacturing and engineering sector can utilize cloud-based simulation services. Some of these solutions are already market-ready and currently being rolled out by the software vendor companies. Some others require further fine-tuning and the implementation of commercial interfaces before being put into the market. The CloudSME use-cases came from a very wide application spectrum. The project implemented, for example, an open marketplace for micro-breweries to optimize their production and distribution processes, an insole design validation service to be used by podiatrists and shoe manufacturers, a generic stock management solution for manufacturing SMEs, and also several “classical” high-performance computing case-studies, such as fluid dynamics simulations for model helicopter design, and dual-fuel internal combustion engine simulation. As the project generated significant impact and interest in the manufacturing sector, 10 CloudSME stakeholders established a follow-up company called CloudSME UG for the future commercialization of the results. Besides the success stories, this talk would also like to highlight the difficulties when transferring the outcomes of an academic research project to real commercial applications. The different mindset and approach of academic and industry partners presented a real challenge for the CloudSME project, with some interesting and valuable lessons learnt. The academic way of supporting SMEs did not always work well with the rather different working practices and culture of many participants. Also, the quality of support regarding operational solutions required by the SMEs is well beyond the typical support services academic institutions are prepared for. Finally, a clear lack of trust in academic solutions when compared to commercial solutions was also imminent. The talk will highlight some of these challenges underpinned by the implementation of the CloudSME use-cases.
Resumo:
The hypothesis that the same educational objective, raised as cooperative or collaborative learning in university teaching does not affect students’ perceptions of the learning model, leads this study. It analyses the reflections of two students groups of engineering that shared the same educational goals implemented through two different methodological active learning strategies: Simulation as cooperative learning strategy and Problem-based Learning as a collaborative one. The different number of participants per group (eighty-five and sixty-five, respectively) as well as the use of two active learning strategies, either collaborative or cooperative, did not show differences in the results from a qualitative perspective.
Resumo:
Conventional wisdom in many agricultural systems across the world is that farmers cannot, will not, or should not pay the full costs associated with surface water delivery. Across Organisation for Economic Co-operation and Development (OECD) countries, only a handful can claim complete recovery of operation, maintenance, and capital costs; across Central and South Asia, fees are lower still, with farmers in Nepal, India, and Kazakhstan paying fractions of a U.S. penny for a cubic meter of water. In Pakistan, fees amount to roughly USD 1-2 per acre per season. However, farmers in Pakistan spend orders of magnitude more for diesel fuel to pump groundwater each season, suggesting a latent willingness to spend for water that, under the right conditions, could potentially be directed toward water-use fees for surface water supply. Although overall performance could be expected to improve with greater cost recovery, asymmetric access to water in canal irrigation systems leaves the question open as to whether those benefits would be equitably shared among all farmers in the system. We develop an agent-based model (ABM) of a small irrigation command to examine efficiency and equity outcomes across a range of different cost structures for the maintenance of the system, levels of market development, and assessed water charges. We find that, robust to a range of different cost and structural conditions, increased water charges lead to gains in both efficiency and concomitant improvements in equity as investments in canal infrastructure and system maintenance improve the conveyance of water resources further down watercourses. This suggests that, under conditions in which (1) farmers are currently spending money to pump groundwater to compensate for a failing surface water system, and (2) there is the possibility that through initial investment to provide perceptibly better water supply, genuine win-win solutions can be attained through higher water-use fees to beneficiary farmers.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
The dynamics, shape, deformation, and orientation of red blood cells in microcirculation affect the rheology, flow resistance and transport properties of whole blood. This leads to important correlations of cellular and continuum scales. Furthermore, the dynamics of RBCs subject to different flow conditions and vessel geometries is relevant for both fundamental research and biomedical applications (e.g drug delivery). In this thesis, the behaviour of RBCs is investigated for different flow conditions via computer simulations. We use a combination of two mesoscopic particle-based simulation techniques, dissipative particle dynamics and smoothed dissipative particle dynamics. We focus on the microcapillary scale of several μm. At this scale, blood cannot be considered at the continuum but has to be studied at the cellular level. The connection between cellular motion and overall blood rheology will be investigated. Red blood cells are modelled as viscoelastic objects interacting hydrodynamically with a viscous fluid environment. The properties of the membrane, such as resistance against bending or shearing, are set to correspond to experimental values. Furthermore, thermal fluctuations are considered via random forces. Analyses corresponding to light scattering measurements are performed in order to compare to experiments and suggest for which situations this method is suitable. Static light scattering by red blood cells characterises their shape and allows comparison to objects such as spheres or cylinders, whose scattering signals have analytical solutions, in contrast to those of red blood cells. Dynamic light scattering by red blood cells is studied concerning its suitability to detect and analyse motion, deformation and membrane fluctuations. Dynamic light scattering analysis is performed for both diffusing and flowing cells. We find that scattering signals depend on various cell properties, thus allowing to distinguish different cells. The scattering of diffusing cells allows to draw conclusions on their bending rigidity via the effective diffusion coefficient. The scattering of flowing cells allows to draw conclusions on the shear rate via the scattering amplitude correlation. In flow, a RBC shows different shapes and dynamic states, depending on conditions such as confinement, physiological/pathological state and cell age. Here, two essential flow conditions are studied: simple shear flow and tube flow. Simple shear flow as a basic flow condition is part of any more complex flow. The velocity profile is linear and shear stress is homogeneous. In simple shear flow, we find a sequence of different cell shapes by increasing the shear rate. With increasing shear rate, we find rolling cells with cup shapes, trilobe shapes and quadrulobe shapes. This agrees with recent experiments. Furthermore, the impact of the initial orientation on the dynamics is studied. To study crowding and collective effects, systems with higher haematocrit are set up. Tube flow is an idealised model for the flow through cylindric microvessels. Without cell, a parabolic flow profile prevails. A single red blood cell is placed into the tube and subject to a Poiseuille profile. In tube flow, we find different cell shapes and dynamics depending on confinement, shear rate and cell properties. For strong confinements and high shear rates, we find parachute-like shapes. Although not perfectly symmetric, they are adjusted to the flow profile and maintain a stationary shape and orientation. For weak confinements and low shear rates, we find tumbling slippers that rotate and moderately change their shape. For weak confinements and high shear rates, we find tank-treading slippers that oscillate in a limited range of inclination angles and strongly change their shape. For the lowest shear rates, we find cells performing a snaking motion. Due to cell properties and resultant deformations, all shapes differ from hitherto descriptions, such as steady tank-treading or symmetric parachutes. We introduce phase diagrams to identify flow regimes for the different shapes and dynamics. Changing cell properties, the regime borders in the phase diagrams change. In both flow types, both the viscosity contrast and the choice of stress-free shape are important. For in vitro experiments, the solvent viscosity has often been higher than the cytosol viscosity, leading to a different pattern of dynamics, such as steady tank-treading. The stress-free state of a RBC, which is the state at zero shear stress, is still controversial, and computer simulations enable direct comparisons of possible candidates in equivalent flow conditions.
Resumo:
This paper provides an agent-based software exploration of the wellknown free market efficiency/equality trade-off. Our study simulates the interaction of agents producing, trading and consuming goods in the presence of different market structures, and looks at how efficient the producers/consumers mapping turn out to be as well as the resulting distribution of welfare among agents at the end of an arbitrarily large number of iterations. Two market mechanisms are compared: the competitive market (a double auction market in which agents outbid each other in order to buy and sell products) and the random one (in which products are allocated randomly). Our results confirm that the superior efficiency of the competitive market (an effective and never stopping producers/consumers mapping and a superior aggregative welfare) comes at a very high price in terms of inequality (above all when severe budget constraints are in play).
Resumo:
Wydział Biologii
Resumo:
The occurrence frequency of failure events serve as critical indexes representing the safety status of dam-reservoir systems. Although overtopping is the most common failure mode with significant consequences, this type of event, in most cases, has a small probability. Estimation of such rare event risks for dam-reservoir systems with crude Monte Carlo (CMC) simulation techniques requires a prohibitively large number of trials, where significant computational resources are required to reach the satisfied estimation results. Otherwise, estimation of the disturbances would not be accurate enough. In order to reduce the computation expenses and improve the risk estimation efficiency, an importance sampling (IS) based simulation approach is proposed in this dissertation to address the overtopping risks of dam-reservoir systems. Deliverables of this study mainly include the following five aspects: 1) the reservoir inflow hydrograph model; 2) the dam-reservoir system operation model; 3) the CMC simulation framework; 4) the IS-based Monte Carlo (ISMC) simulation framework; and 5) the overtopping risk estimation comparison of both CMC and ISMC simulation. In a broader sense, this study meets the following three expectations: 1) to address the natural stochastic characteristics of the dam-reservoir system, such as the reservoir inflow rate; 2) to build up the fundamental CMC and ISMC simulation frameworks of the dam-reservoir system in order to estimate the overtopping risks; and 3) to compare the simulation results and the computational performance in order to demonstrate the ISMC simulation advantages. The estimation results of overtopping probability could be used to guide the future dam safety investigations and studies, and to supplement the conventional analyses in decision making on the dam-reservoir system improvements. At the same time, the proposed methodology of ISMC simulation is reasonably robust and proved to improve the overtopping risk estimation. The more accurate estimation, the smaller variance, and the reduced CPU time, expand the application of Monte Carlo (MC) technique on evaluating rare event risks for infrastructures.
Resumo:
Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)
Resumo:
The aim of this work is to simulate and optically characterize the piezoelectric performance of complementary metal oxide semiconductor (CMOS) compatible microcantilevers based on aluminium nitride (AlN) and manufactured at room temperature. This study should facilitate the integration of piezoelectric micro-electro-mechanical systems (MEMS) such as microcantilevers, in CMOS technology. Besides compatibility with standard integrated circuit manufacturing procedures, low temperature processing also translates into higher throughput and, as a consequence, lower manufacturing costs. Thus, the use of the piezoelectric properties of AlN manufactured by reactive sputtering at room temperature is an important step towards the integration of this type of devices within future CMOS technology standards. To assess the reliability of our fabrication process, we have manufactured arrays of free-standing microcantilever beams of variable dimension and studied their piezoelectric performance. The characterization of the first out-of-plane modes of AlN-actuated piezoelectric microcantilevers has been carried out using two optical techniques: laser Doppler vibrometry (LDV) and white light interferometry (WLI). In order to actuate the cantilevers, a periodic chirp signal in certain frequency ranges was applied between the device electrodes. The nature of the different vibration modes detected has been studied and compared with that obtained by a finite element model based simulation (COMSOL Multiphysics), showing flexural as well as torsional modes. The correspondence between theoretical and experimental data is reasonably good, probing the viability of this high throughput and CMOS compatible fabrication process. To complete the study, X-ray diffraction as well as d33 piezoelectric coefficient measurements were also carried out.