927 resultados para Upstream Oil and Gas
Resumo:
With the depletion of conventional oil and gas sources, the world is turning to what Urry terms “tough oil,” such as oil from the Alberta oil sands and Arctic. Fracking is a prominent example of this. Situated within an environmental justice framework, I analyze community interpretations and responses to proposed fracking development near Gros Morne National Park, Newfoundland, Canada. Based on data generated from interviews, field observations and content analysis of texts, my findings suggest that how residents view rural place is highly significant in influencing supportive or oppositional positions on fracking. Proponents picture place as a resource extraction landscape, whereas opponents understand place as a restorative landscape for leisure/tourism activities. Through debates about fracking, place is contested and re-imagined. In many ways, fracking is a struggle over who has the power to define the meanings and characteristics of rural community in an era of tough oil and significant rural change.
Resumo:
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to 650 mmol L**-1 at 150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at 60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (dD-CH4 = -170.8 per mil (SMOW), d13C-CH4 = -61.0 per mil (V-PDB), d13C-C2H6 = -44.0 per mil (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 x 10**6 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
The Bakken region of North Dakota and Montana has experienced perhaps the greatest effects of increased oil and gas development in the United States, with major implications for local governments. Though development of the Bakken began in the early 2000s, large-scale drilling and population growth dramatically affected the region from roughly 2008 through today. This case study examines the local government fiscal benefits and challenges experienced by Dunn County and Watford City, which lie near the heart of the producing region. For both local governments, the initial growth phase presented major fiscal challenges due to rapidly expanding service demands and insufficient revenue. In the following years, these challenges eased as demand for services slowed due to declining industry activity and state tax policies redirected more funds to localities. Looking forward, both local governments describe their fiscal health as stronger because of the Bakken boom, though higher debt loads and an economy heavily dependent on the volatile oil and gas industry each pose challenges for future fiscal stability.
Resumo:
Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.
The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.
In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.
I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.
Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.
Resumo:
Background: Outbreaks of infectious diseases such as Ebola have dramatic economic impacts on affected nations due to significant direct costs and indirect costs, as well as increased expenditure by the government to meet the health and security crisis. Despite its dense population, Nigeria was able to contain the outbreak swiftly and was declared Ebola free on 13th October 2014. Although Nigeria’s Ebola containment success was multifaceted, the private sector played a key role in Nigeria’s fight against Ebola. An epidemic of a disease like Ebola, not only consumes health resources but also detrimentally disrupts trade and travel to impact both public and private sector resulting in the ‘fearonomic’ effect of the contagion. In this thesis, I have defined ‘fearonomics’ or the ‘fearonomic effects’ of a disease as the intangible and intangible economic effects of both informed and misinformed aversion behavior exhibited by individuals, organizations, or countries during an outbreak. During an infectious disease outbreak, there is a significant potential for public-private sector collaborations that can help offset some of the government’s cost of controlling the epidemic.
Objective: The main objective of this study is to understand the ‘fearonomics’ of Ebola in Nigeria and to evaluate the role of the key private sector stakeholders in Nigeria’s Ebola response.
Methods: This retrospective qualitative study was conducted in Nigeria and utilizes grounded theory to look across different economic sectors in Nigeria to understand the impact of Ebola on Nigeria’s private sector and how it dealt with the various challenges posed by the disease and its ‘fearonomic effects'.
Results: Due to swift containment of Ebola in Nigeria, the economic impact of the disease was limited especially in comparison to the other Ebola-infected countries such as Liberia, Sierra Leone, and Guinea. However, the 2014 Ebola outbreak had more than a just direct impact on the country’s economy and despite the swift containment, no economic sector was immune to the disease’s fearonomic impact. The potential scale of the fearonomic impact of a disease like Ebola was one of the key motivators for the private sector engagement in the Ebola response.
The private sector in Nigeria played an essential role in facilitating the country’s response to Ebola. The private sector not only provided in-cash donations but significant in-kind support to both the Federal and State governments during the outbreak. Swift establishment of an Ebola Emergency Operation Centre (EEOC) was essential to the country’s response and was greatly facilitated by the private sector, showcasing the crucial role of private sector in the initial phase of an outbreak. The private sector contributed to Nigeria’s fight against Ebola not only by donating material assets but by continuing operations and partaking in knowledge sharing and advocacy. Some sector such as the private health sector, telecom sector, financial sector, oil and gas sector played a unique role in orchestrating the Nigerian Ebola response and were among the first movers during the outbreak.
This paper utilizes the lessons from Nigeria’s containment of Ebola to highlight the potential of public-private partnerships in preparedness, response, and recovery during an outbreak.
Resumo:
The sediment temperature distribution at mud volcanoes provides insights into their activity and into the occurrence of gas hydrates. If ambient pressure and temperature conditions are close to the limits of the gas hydrate stability field, the sediment temperature distribution not only limits the occurrence of gas hydrates, but is itself influenced by heat production and consumption related to the formation and dissociation of gas hydrates. Located in the Sorokin Trough in the northern Black Sea, the Dvurechenskii mud volcano (DMV) was in the focus of detailed investigations during the M72/2 and M73/3a cruises of the German R/V Meteor and the ROV Quest 4000 m in February and March 2007. A large number of in-situ sediment temperature measurements were conducted from the ROV and with a sensor-equipped gravity corer. Gas hydrates were sampled in pressurized cores using a dynamic autoclave piston corer (DAPC). The thermal structure of the DMV suggests a regime of fluid flow at rates decreasing from the summit towards the edges of the mud volcano, accompanied by intermittent mud expulsion at the summit. Modeled gas hydrate dissociation temperatures reveal that the gas hydrates at the DMV are very close to the stability limits. Changes in heat flow due to variable seepage rates probably do not result in changes in sediment temperature but are compensated by gas hydrate dissociation and formation.
Resumo:
A polyhydroxybutyrate (PHB) producing cyanobacteria was converted through hydrothermal liquefaction (HTL) into propylene and a bio-oil suitable for advanced biofuel production. HTL of model compounds demonstrated that in contrast to proteins and carbohydrates, no synergistic effects were detected when converting PHB in the presence of algae. Subsequently, Synechocystis cf. salina, which had accumulated 7.5wt% PHB was converted via HTL (15% dry weight loading, 340°C). The reaction gave an overall propylene yield of 2.6%, higher than that obtained from the model compounds, in addition to a bio-oil with a low nitrogen content of 4.6%. No propylene was recovered from the alternative non-PHB producing cyanobacterial strains screened, suggesting that PHB is the source of propylene. PHB producing microorganisms could therefore be used as a feedstock for a biorefinery to produce polypropylene and advanced biofuels, with the level of propylene being proportional to the accumulated amount of PHB.
Resumo:
A polyhydroxybutyrate (PHB) producing cyanobacteria was converted through hydrothermal liquefaction (HTL) into propylene and a bio-oil suitable for advanced biofuel production. HTL of model compounds demonstrated that in contrast to proteins and carbohydrates, no synergistic effects were detected when converting PHB in the presence of algae. Subsequently, Synechocystis cf. salina, which had accumulated 7.5wt% PHB was converted via HTL (15% dry weight loading, 340°C). The reaction gave an overall propylene yield of 2.6%, higher than that obtained from the model compounds, in addition to a bio-oil with a low nitrogen content of 4.6%. No propylene was recovered from the alternative non-PHB producing cyanobacterial strains screened, suggesting that PHB is the source of propylene. PHB producing microorganisms could therefore be used as a feedstock for a biorefinery to produce polypropylene and advanced biofuels, with the level of propylene being proportional to the accumulated amount of PHB.
Resumo:
This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.
Resumo:
The European Union continues to exert a large influence on the direction of member states energy policy. The 2020 targets for renewable energy integration have had significant impact on the operation of current power systems, forcing a rapid change from fossil fuel dominated systems to those with high levels of renewable power. Additionally, the overarching aim of an internal energy market throughout Europe has and will continue to place importance on multi-jurisdictional co-operation regarding energy supply. Combining these renewable energy and multi-jurisdictional supply goals results in a complicated multi-vector energy system, where the understanding of interactions between fossil fuels, renewable energy, interconnection and economic power system operation is increasingly important. This paper provides a novel and systematic methodology to fully understand the changing dynamics of interconnected energy systems from a gas and power perspective. A fully realistic unit commitment and economic dispatch model of the 2030 power systems in Great Britain and Ireland, combined with a representative gas transmission energy flow model is developed. The importance of multi-jurisdictional integrated energy system operation in one of the most strategically important renewable energy regions is demonstrated.
Resumo:
The generation of heterogeneous big data sources with ever increasing volumes, velocities and veracities over the he last few years has inspired the data science and research community to address the challenge of extracting knowledge form big data. Such a wealth of generated data across the board can be intelligently exploited to advance our knowledge about our environment, public health, critical infrastructure and security. In recent years we have developed generic approaches to process such big data at multiple levels for advancing decision-support. It specifically concerns data processing with semantic harmonisation, low level fusion, analytics, knowledge modelling with high level fusion and reasoning. Such approaches will be introduced and presented in context of the TRIDEC project results on critical oil and gas industry drilling operations and also the ongoing large eVacuate project on critical crowd behaviour detection in confined spaces.
Resumo:
The World Bank has published estimates of sustainability of consumption paths by adjusting saving rates to take account of the depletion of non-renewable resources. During the period of North Sea oil production Scotland has been in a fiscal union with the rest of the UK. The present paper adjusts the World Bank data to produce separate genuine saving estimates for Scotland and the rest of the UK for 1970-2009, based on a ‘derivation’ principle for oil revenues. The calculations indicate that Scotland has had a negative genuine saving rate for most of the period of exploitation of North Sea oil resources, with genuine saving being positive in the rest of the UK during this period.