Temperature measurements, gas chemistry, and gas hydrates of the Dvurechenskii mud volcano


Autoria(s): Feseker, Tomas; Pape, Thomas; Wallmann, Klaus; Klapp, Stephan A; Schmidt-Schierhorn, Friederike; Bohrmann, Gerhard
Cobertura

MEDIAN LATITUDE: 44.282472 * MEDIAN LONGITUDE: 34.982091 * SOUTH-BOUND LATITUDE: 44.276300 * WEST-BOUND LONGITUDE: 34.974517 * NORTH-BOUND LATITUDE: 44.287717 * EAST-BOUND LONGITUDE: 34.986917 * DATE/TIME START: 2007-02-27T10:24:00 * DATE/TIME END: 2007-03-28T10:17:00

Data(s)

27/09/2009

Resumo

The sediment temperature distribution at mud volcanoes provides insights into their activity and into the occurrence of gas hydrates. If ambient pressure and temperature conditions are close to the limits of the gas hydrate stability field, the sediment temperature distribution not only limits the occurrence of gas hydrates, but is itself influenced by heat production and consumption related to the formation and dissociation of gas hydrates. Located in the Sorokin Trough in the northern Black Sea, the Dvurechenskii mud volcano (DMV) was in the focus of detailed investigations during the M72/2 and M73/3a cruises of the German R/V Meteor and the ROV Quest 4000 m in February and March 2007. A large number of in-situ sediment temperature measurements were conducted from the ROV and with a sensor-equipped gravity corer. Gas hydrates were sampled in pressurized cores using a dynamic autoclave piston corer (DAPC). The thermal structure of the DMV suggests a regime of fluid flow at rates decreasing from the summit towards the edges of the mud volcano, accompanied by intermittent mud expulsion at the summit. Modeled gas hydrate dissociation temperatures reveal that the gas hydrates at the DMV are very close to the stability limits. Changes in heat flow due to variable seepage rates probably do not result in changes in sediment temperature but are compensated by gas hydrate dissociation and formation.

Formato

application/zip, 3 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.745565

doi:10.1594/PANGAEA.745565

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Feseker, Tomas; Pape, Thomas; Wallmann, Klaus; Klapp, Stephan A; Schmidt-Schierhorn, Friederike; Bohrmann, Gerhard (2009): The thermal structure of the Dvurechenskii mud volcano and its implications for gas hydrate stability and eruption dynamics. Marine and Petroleum Geology, 26(9), 1812-1823, doi:10.1016/j.marpetgeo.2009.01.021

Palavras-Chave #1; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 2; 20; 3; 4; 5; 6; 7; 8; 9; C1/C2+; C2H6; C3H8; Calculated, see reference(s); Carbon dioxide; Center for Marine Environmental Sciences; CH4; CH4 bound in hydrate; CO2; Comment; DAPC; DAPC-5; DAPC-6; DAPC-7; Dissolved CH4; Dvurechenskii; Dvurechenskii mud volcano; Dynamic autoclave piston corer; Ethane; Event; Gas chromatography; GC_T; GeoB11911; GeoB11914; GeoB11916; Gravity Corer/temperature probe; i-C4H10; Isobutane; M72/2; M72/2_273; M72/2_274; M72/2_275; M72/2_276; M72/2_277; M72/2_297; M72/2_298; M72/2_299; M72/2_300; M72/2_302; M72/2_303; M72/2_304; M72/2_305; M72/2_306; M72/2_307; M72/2_310; M72/2_311; M72/2_313; M72/2_314; M72/2_316; M72/3a; MARUM; Meteor (1986); Methane; Methane/C2+ hydrocarbons ratio; Penetration depth; Penetr depth; Propane; see reference(s); T1; T2; T3; T4; T5; T6; Temperature, technical; Temperature probe; T tech
Tipo

Dataset