886 resultados para Uniformly Starlike Functions
Resumo:
Inorganic carbon forms and their influencing factors, mutual transformation and contribution to carbon cycling in the Jiaozhou Bay sediments were discussed. The results show that inorganic carbon in sediments could be divided into five forms: NaCl form, NH3 center dot H2O form, NaOH form, NH2OH center dot HCl form and HCl form. Thereinto, NH2OH center dot HCl form and HCl form account for more than 70% of total inorganic carbon. There was close relationship among every form of inorganic carbon and their correlativity was clearly different with different sedimentary environment except the similar strong positive correlation among NH2OH center dot HCl form, HCl form and total inorganic carbon in all regions of the Jiaozhou Bay. All forms of inorganic carbon were influenced by organic carbon, pH, Eh, Es, nitrogen and phosphorus in sediments, but their influence had different characteristics in different regions. Every farm of inorganic carbon transformed into each other continuously during early diagenesis of sediments and the common phenomenon was that NaCl form, NH3 center dot H2O form, NaOH form and NH2OH center dot HCl form might transform into steady HCl form. NaCl form, NH3 center dot H2O form, NaOH form and NH2OH center dot HCl form could participate in carbon recycle and they are potential carbon source; HCl form may be buried for a long time in sediments, and it may be one of the final resting places of atmospheric CO2. Inorganic carbon which entered into sediments was about 4.98 x 10(10) g in the Jiaozhou Bay every year, in which about 1.47x10(10) g of inorganic carbon might be buried for a long time and about 3.51. x 10(10) g of inorganic carbon might return into seawater and take part in carbon recycling.
Resumo:
Offshore seismic exploration is full of high investment and risk. And there are many problems, such as multiple. The technology of high resolution and high S/N ratio on marine seismic data processing is becoming an important project. In this paper, the technology of multi-scale decomposition on both prestack and poststack seismic data based on wavelet and Hilbert-Huang transform and the theory of phase deconvolution is proposed by analysis of marine seismic exploration, investigation and study of literatures, and integration of current mainstream and emerging technology. Related algorithms are studied. The Pyramid algorithm of decomposition and reconstruction had been given by the Mallat algorithm of discrete wavelet transform In this paper, it is introduced into seismic data processing, the validity is shown by test with field data. The main idea of Hilbert-Huang transform is the empirical mode decomposition with which any complicated data set can be decomposed into a finite and often small number of intrinsic mode functions that admit well-behaved Hilbert transform. After the decomposition, a analytical signal is constructed by Hilbert transform, from which the instantaneous frequency and amplitude can be obtained. And then, Hilbert spectrum. This decomposition method is adaptive and highly efficient. Since the decomposition is based on the local characteristics of the time scale of data, it is applicable to nonlinear and non-stationary processes. The phenomenons of fitting overshoot and undershoot and end swings are analyzed in Hilbert-Huang transform. And these phenomenons are eliminated by effective method which is studied in the paper. The technology of multi-scale decomposition on both prestack and poststack seismic data can realize the amplitude preserved processing, enhance the seismic data resolution greatly, and overcome the problem that different frequency components can not restore amplitude properly uniformly in the conventional method. The method of phase deconvolution, which has overcome the minimum phase limitation in traditional deconvolution, approached the base fact well that the seismic wavelet is phase mixed in practical application. And a more reliable result will be given by this method. In the applied research, the high resolution relative amplitude preserved processing result has been obtained by careful analysis and research with the application of the methods mentioned above in seismic data processing in four different target areas of China Sea. Finally, a set of processing flow and method system was formed in the paper, which has been carried on in the application in the actual production process and has made the good progress and the huge economic benefit.
Resumo:
In the general case, a trilinear relationship between three perspective views is shown to exist. The trilinearity result is shown to be of much practical use in visual recognition by alignment --- yielding a direct method that cuts through the computations of camera transformation, scene structure and epipolar geometry. The proof of the central result may be of further interest as it demonstrates certain regularities across homographies of the plane and introduces new view invariants. Experiments on simulated and real image data were conducted, including a comparative analysis with epipolar intersection and the linear combination methods, with results indicating a greater degree of robustness in practice and a higher level of performance in re-projection tasks.
Resumo:
In this paper, we bound the generalization error of a class of Radial Basis Function networks, for certain well defined function learning tasks, in terms of the number of parameters and number of examples. We show that the total generalization error is partly due to the insufficient representational capacity of the network (because of its finite size) and partly due to insufficient information about the target function (because of finite number of samples). We make several observations about generalization error which are valid irrespective of the approximation scheme. Our result also sheds light on ways to choose an appropriate network architecture for a particular problem.
Resumo:
Uniformly carbon-covered alumina (CCA) was prepared via the carbonization of sucrose highly dispersed on the alumina surface. The CCA samples were characterized by XRD, XPS, DTA-TG, UV Raman, nitrogen adsorption experiments at 77 K, and rhodamine B (RB) adsorption in aqueous media. UV Raman spectra indicated that the carbon species formed were probably conjugated olefinic or polycyclic aromatic hydrocarbons, which can be considered molecular subunits of a graphitic plane. The N(2) adsorption isotherms, pore size distributions, and XPS results indicated that carbon was uniformly dispersed on the alumina surface in the as-prepared CCA. The carbon coverage and number of carbon layers in CCA could be controlled by the tuning of the sucrose content in the precursor and impregnation times. RB adsorption isotherms suggested that the monolayer adsorption capacity of RB on alumina increased drastically for the sample with uniformly dispersed carbon. The as-prepared CCA possessed the texture of alumina and the surface properties of carbon or both carbon and alumina depending on the carbon coverage.
Resumo:
R. Zwiggelaar and M.G.F. Wilson, 'Single Mueller matrix description of the propagation of degree of polarisation in a uniformly anisotropic single-mode optical fibre', IEE Proceedings Optoelectronics 141 (6), 367-372 (1994)
Resumo:
B.M. Brown, M. Marletta, S. Naboko, I. Wood: Boundary triplets and M-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices, J. London Math. Soc., June 2008; 77: 700-718. The full text of this article will be made available in this repository in June 2009 Sponsorship: EPSRC,INTAS
Resumo:
Gohm, Rolf; Dey, S., 'Characteristic function for ergodic tuples', Integral Equations and Operator Theory 58(1) pp.43-63 RAE2008
Resumo:
Li, Xing; Habbal, S.R., (2005) 'Hybrid simulation of ion cyclotron resonance in the solar wind: evolution of velocity distribution functions', Journal of Geophysical Research 110(A10) pp.A10109 RAE2008
Resumo:
In this paper, a Lyapunov function candidate is introduced for multivariable systems with inner delays, without assuming a priori stability for the nondelayed subsystem. By using this Lyapunov function, a controller is deduced. Such a controller utilizes an input-output description of the original system, a circumstance that facilitates practical applications of the proposed approach.
Resumo:
http://www.archive.org/details/theparishpriesto00heusuoft
Resumo:
BACKGROUND:In the current climate of high-throughput computational biology, the inference of a protein's function from related measurements, such as protein-protein interaction relations, has become a canonical task. Most existing technologies pursue this task as a classification problem, on a term-by-term basis, for each term in a database, such as the Gene Ontology (GO) database, a popular rigorous vocabulary for biological functions. However, ontology structures are essentially hierarchies, with certain top to bottom annotation rules which protein function predictions should in principle follow. Currently, the most common approach to imposing these hierarchical constraints on network-based classifiers is through the use of transitive closure to predictions.RESULTS:We propose a probabilistic framework to integrate information in relational data, in the form of a protein-protein interaction network, and a hierarchically structured database of terms, in the form of the GO database, for the purpose of protein function prediction. At the heart of our framework is a factorization of local neighborhood information in the protein-protein interaction network across successive ancestral terms in the GO hierarchy. We introduce a classifier within this framework, with computationally efficient implementation, that produces GO-term predictions that naturally obey a hierarchical 'true-path' consistency from root to leaves, without the need for further post-processing.CONCLUSION:A cross-validation study, using data from the yeast Saccharomyces cerevisiae, shows our method offers substantial improvements over both standard 'guilt-by-association' (i.e., Nearest-Neighbor) and more refined Markov random field methods, whether in their original form or when post-processed to artificially impose 'true-path' consistency. Further analysis of the results indicates that these improvements are associated with increased predictive capabilities (i.e., increased positive predictive value), and that this increase is consistent uniformly with GO-term depth. Additional in silico validation on a collection of new annotations recently added to GO confirms the advantages suggested by the cross-validation study. Taken as a whole, our results show that a hierarchical approach to network-based protein function prediction, that exploits the ontological structure of protein annotation databases in a principled manner, can offer substantial advantages over the successive application of 'flat' network-based methods.
Resumo:
We investigate the problem of learning disjunctions of counting functions, which are general cases of parity and modulo functions, with equivalence and membership queries. We prove that, for any prime number p, the class of disjunctions of integer-weighted counting functions with modulus p over the domain Znq (or Zn) for any given integer q ≥ 2 is polynomial time learnable using at most n + 1 equivalence queries, where the hypotheses issued by the learner are disjunctions of at most n counting functions with weights from Zp. The result is obtained through learning linear systems over an arbitrary field. In general a counting function may have a composite modulus. We prove that, for any given integer q ≥ 2, over the domain Zn2, the class of read-once disjunctions of Boolean-weighted counting functions with modulus q is polynomial time learnable with only one equivalence query, and the class of disjunctions of log log n Boolean-weighted counting functions with modulus q is polynomial time learnable. Finally, we present an algorithm for learning graph-based counting functions.
Resumo:
Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP networks synthesize fuzzy logic and ART by exploiting the formal similarity between tile computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic intersection (∩) with the fuzzy intersection(∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric theory in which the fuzzy intersection and the fuzzy union (∨), or component-wise maximum, play complementary roles. A geometric interpretation of fuzzy ART represents each category as a box that increases in size as weights decrease. This paper analyzes fuzzy ART models that employ various choice functions for category selection. One such function minimizes total weight change during learning. Benchmark simulations compare peformance of fuzzy ARTMAP systems that use different choice functions.
Resumo:
Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-91-J-1309)