976 resultados para Tomato paste
Resumo:
Tomato is the second most important vegetable crop worldwide and a rich source of industrially interesting antioxidants. Hence, the microwave-assisted extraction of hydrophilic (H) and lipophilic (L) antioxidants from a surplus tomato crop was optimized using response surface methodology. The relevant independent variables were temperature (T), extraction time (t), ethanol concentration (Et) and solid/liquid ratio (S/L). The concentration-time response methods of crocin and β-carotene bleaching were applied, since they are suitable in vitro assays to evaluate the antioxidant activity of H and L matrices, respectively. The optimum operating conditions that maximized the extraction were as follows: t, 2.25 min; T, 149.2 ºC; Et, 99.1 %; and S/L, 45.0 g/L for H antioxidants; and t, 15.4 min; T, 60.0 ºC; Et, 33.0 %; and S/L, 15.0 g/L for L antioxidants. This industrial approach indicated that surplus tomatoes possess a high content of antioxidants, offering an alternative source for obtaining natural value-added compounds. Additionally, by testing the relationship between the polarity of the extraction solvent and the antioxidant activity of the extracts in H and L media (polarity-activity relationship), useful information for the study of complex natural extracts containing components with variable degrees of polarity was obtained.
Resumo:
The production of natural extracts requires suitable processing conditions to maximize the preservation of the bioactive ingredients. Herein, a microwave-assisted extraction (MAE) process was optimized, by means of response surface methodology (RSM), to maximize the recovery of phenolic acids and flavonoids and obtain antioxidant ingredients from tomato. A 5-level full factorial Box-Behnken design was successfully implemented for MAE optimization, in which the processing time (t), temperature (T), ethanol concentration (Et) and solid/liquid ratio (S/L) were relevant independent variables. The proposed model was validated based on the high values of the adjusted coefficient of determination and on the non-significant differences between experimental and predicted values. The global optimum processing conditions (t=20 min; T=180 ºC; Et=0 %; and S/L=45 g/L) provided tomato extracts with high potential as nutraceuticals or as active ingredients in the design of functional foods. Additionally, the round tomato variety was highlighted as a source of added-value phenolic acids and flavonoids.
Resumo:
The electroanalytical determination of isoprenaline in pharmaceutical preparations of a homemade carbon paste electrode modified with copper(II) hexacyanoferrate(III) (CuHCF) was studied by cyclic voltammetry. Several parameters were studied for the optimization of the sensor such as electrode composition, electrolytic solution, pH effect, potential scan rate and interferences in potential. The optimum conditions were found in an electrode composition (in mass) of 15% CuHCF, 60% graphite and 25% mineral oil in 0.5 mol l(-1) acetate buffer solution at pH 6.0. The analytical curve for isoprenaline was linear in the concentration range from 1.96 x 10(-4) to 1.07 x 10(-3) mol l(-1) with a detection limit of 8.0 x 10(-5) mol l(-1). The relative standard deviation was 1.2% for 1.96 x 10(-4) mol l(-1) isoprenaline solution (n=5). The procedure was successfully applied to the determination of isoprenaline in pharmaceutical preparations; the CuHCF modified carbon paste electrode gave comparable results to those results obtained using a UV spectrophotometric method. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Tomato ( Lycopersicon esculentum Mill) is the leading vegetable in terms of production in Kenya. The Kenyan local market has a wide variety of tomato cultivars with a wide range of morphological and sensorial characteristics. However, information on the nutritional and postharvest quality of these varieties is lacking. The aim of this research was to investigate and identify tomato varieties of superior postharvest quality and recommend them to small and medium scale farmers. In this study, six tomato varieties were grown in a greenhouse and analyzed at three maturity stages (mature green, turning and red ripe). The tomatoes were analyzed at specific days after harvest and storage at room temperature (25o C). Percentage weight loss, color, respiration and ethylene production rates were analyzed to assess the postharvest quality of the tomatoes. The color was measured using a Minolta Chromameter while the respiration rate and ethylene production rates were determined using the static system approach. Color, weight loss, respiration and ethylene production rates were positively affected by storage time when harvested at the three maturity stages. The percentage weight loss of the tomato fruits was higher in the determinate varieties, and at the turning stage of maturity (3.8 %). Minor color changes were observed after storage of the tomatoes harvested at red stage for six days. Both rates of respiration and ethylene production were low, with the respiration rate ranging between 56-10 ml CO2 Kg-1h-1. The Chonto F1 variety had the highest rate of ethylene production (5.4 μL C2H4 Kg-1h-1) on the 4th day of storage after harvest at the red ripe stage. Overall, the indeterminate tomato varieties displayed better postharvest quality that can prolong the fruits shelf life for marketing. In turn, the turning stage of maturity proved to be a better stage to harvest tomatoes as the color development was more uniform.
Resumo:
The electrochemical behavior of a carbon paste electrode modified (CPEM) with N,N′-ethylenebis(salicylideneiminato)oxovanadium(IV) complex ([(VO)-O-IV(Salen)]) was investigated as a new sensor for cysteine. Cyclic voltammetry at the modified electrode in 0.1 mol L-1 KCl Solution (pH 5.0) showed a single-electron reduction/oxidation of the Couple VO3+/VO2+. The CPEM with [VO(Salen)] presented good electrochemical stability in a wide pH range (4.0-10.0) and an ability to electrooxidate cysteine at 0.65 V versus SCE. These results demonstrate the viability of the use of this modified electrode as an amperometric sensor for cysteine determination. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The growing concerns for physical wellbeing and health have been reflected in the way we choose food in our table. Nowadays, we are all more informed consumers and choose healthier foods. On the other hand, stroke, cancer and atherosclerosis may be somehow minimized by the intake of some bioactive compounds present in food, the so-called nutraceuticals and functional foods. The aim of this work was to make a revision of the published studies about the effects of some bioactive compounds, namely lycopene in human health, in the prevention of diseases, thus playing the role of a functional food. Free radical in human body can induce cell damage and consequently can be responsible for the development of some cancers and chronic diseases. Lycopene is one of the most powerful antioxidants known, being the predominant carotenoid in tomato. The respective chemistry, bioavailability, and its functional role in the prevention of several diseases will be object of this work. On the other hand, the inclusion of lycopene in some foods can also be made by biotechnology and represents a way to recover the wastes in the tomato industry with nutritional positive effects in health.
Resumo:
Scarcity of freshwater due to recurrent drought threatens the sustainable crop production in semi-arid regions of Ethiopia. Deficit irrigation is thought to be one of the promising strategies to increase water use efficiency (WUE) under scarce water resources. A study was carried out to investigate the effect of alternate furrow irrigation (AFI), deficit irrigation (DI) and full irrigation (FI) on marketable fruit yield, WUE and physio-chemical quality of four fresh-market tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) in 2013 and 2014. The results showed that marketable yield, numbers of fruits per plant and fruit size were not significantly affected by AFI and DI irrigations. WUE under AFI and DI increased by 36.7% and 26.1%, respectively with close to 30% irrigation water savings achieved. A different response of cultivars to irrigation treatments was found for marketable yield, number of fruits and fruit size, WUE, total soluble solids (TSS) of the fruit juice, titratable acids (TA) and skin thickness. Cochoro and Fetan performed well under both deficit irrigation treatments exhibited by bigger fruit size which led to higher WUE. ARP Tomato d2 showed good yields under well-watered conditions. Chali had consistently lower marketable fruit yield and WUE. TSS and TA tended to increase under deficit irrigation; however, the overall variations were more explained by irrigation treatments than by cultivars. It was shown that AFI is a suitable deficit irrigation practice to increase fresh yield, WUE and quality of tomato in areas with low water availability. However, AFI requires suitable cultivars in order to exploit its water saving potential.
Resumo:
Understanding the variation in physiological response to deficit irrigation together with better knowledge on physiological characteristics of different genotypes that contribute to drought adaptation mechanisms would be helpful in transferring different irrigation technologies to farmers. A field experiment was carried to investigate the physiological response of four tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) to moderate water deficit induced by alternate furrow irrigation (AFI) and deficit irrigation (DI) under semi-arid condition of Ethiopia during 2013 and 2014. The study also aimed at identifying physiological attributes to the fruit yield of tomato under different deficit irrigation techniques. A factorial combination of irrigation treatments and cultivar were arranged in a complete randomized design with three replicates. Results showed that stomatal conductance (g_s) was significantly reduced while photosynthetic performance measured as chlorophyll fluorescence (Fv’/Fm’), relative water content (RWC) and leaf ash content remained unaffected under deficit irrigations. Significant differences among cultivars were found for water use efficiency (WUE), g_s, chlorophyll content (Chl_SPAD), normal difference vegetation index (NDVI), leaf ash content and fruit growth rate. However, cultivar differences in WUE were more accounted for by the regulation of g_s, therefore, g_s could be useful for breeders for screening large numbers of genotypes with higher WUE under deficit irrigation condition. The study result also demonstrated that cultivar with traits that contribute to achieve higher yields under deficit irrigation strategies has the potential to increase WUE.
Resumo:
In this context, the objective of this work was to evaluate the performance of mini tomato cultivars of determinate growth habit, in two crop seasons in the conditions of the Sub-Mid São Francisco Valley, Brazil.
Resumo:
A alface é uma hortaliça folhosa de grande importância econômica e social no Brasil, pois bastante cultivada por pequenos produtores e em hortas familiares. Isto ocorre principalmente pela facilidade que a cultura apresenta em se adaptar às mais diferentes condições. As doenças causadas por vírus são as principais responsáveis pelas perdas na produção na cultura, entre elas destacam-se as causadas por vírus do gênero Tospovirus. Durante visitas realizadas a áreas produtoras de hortaliças localizadas na região metropolitana de Belém-Pará, foi observada a alta incidência de plantas com sintomas de viroses. Assim, o trabalho teve como objetivo identificar o agente causal do vira cabeça da alface, por meio de RT-PCR e sequenciamento do ácido nucléico. Para isso, foi feita a extração de ácidos nucleicos total a partir de folhas de alface com sintoma de vira-cabeça e, posteriormente foi realizado o RT-PCR utilizando os primers universais para o gênero Tospovirus. O produto do PCR foi sequenciado e avaliado nos programas Blast, ClustalW e Mega 7.0. A partir da análise da filogenia foi observado que os isolados formaram um clado com os acessos da espécie Tomato chlorotic spot virus (TCSV). Este foi o primeiro relato de TCSV em alface no Estado do Pará
Resumo:
A gene encoding an elongation factor LeEF-Tsmt that participates in the protein synthesis process in mitochondria shows strong expression in ripening fruit as compared to other organs. It is strongly up-regulated during the first stages of the ripening process in parallel with the climacteric rise in respiration. LeEF-Tsmt expression is stimulated by ethylene, wounding and high temperature but ethylene-insensitive mutants exhibit normal expression. Transgenic fruit have been generated in which LeEF-Tsmt has been constitutively up- and down-regulated. Surprisingly, altering the expression of the gene by genetic transformation with antisense and sense LeEF-Tsmt constructs did not affect the pattern of respiration and ethylene production during ripening and upon wounding. In addition, expression of the alternative oxidase gene which is known to play an important role in respiratory climacteric was not affected. Possible reasons for the absence of effect on respiration of variations of LeEF-Tsmt gene expression are discussed.
Resumo:
Desenvolveu-se um meio semi-seletivo para Pseudomonas syringae pv. tomato (Pst), objetivando seu uso em detecção do patógeno em sementes de tomate. A seletividade do meio foi obtida através de antibiogramas e testes de crescimento do patógeno, representado por 04 isolados procedentes de Guaíra, SP, Botucatu, SP, Coimbra,MG e Planaltina, GO. Também, foram comparadas diversas concentrações do agente antifúngico clorotalonil e do agente halofílico. O meio proposto tem a seguinte constituição, tendo como base o meio B de King: proteose peptona n.3, 10g; KH2PO4, 1,5g; MgSO4, 7H2O, 15g; glicerol, 10 ml; NaCl, 15 g; Clorotalonil, 200 ug/ml; agar, 15g; agua destilada, 1000 ml; acrescido dos antibioticos cefadroxil, 50 ug/ml; cefalexina, 50 ug/ml e clindamicina, 100 ug/ml. Este meio apresenta um índice de repressividade de 1,3%, alto índice de supressividade e sensibilidade de 10(2) UFC/ml de Pst.
Resumo:
Among the various aspects to be investigated for a technological and productive upgrade of tomato greenhouse production in the Mediterranean area, the application of supplementary LED interlighting still shows limited interest. However, high-density tomato cultivation with intensive high-wire systems could lead to mutual shading and consequent reduction in photosynthesis and yield, even in case of appreciable amounts of external solar radiation, as in Southern Europe. Applications of interest could also involve off-season production or Building-Integrated Agriculture (BIA) such as rooftop greenhouses, where municipal regulations for structure and fire safety could limit the incoming radiation in the growing area. The aim of this research was to investigate diversified applications of supplemental LED interlighting for greenhouse tomato production (Solanum lycopersicum) in the Mediterranean countries. The diversified applications included: effects on post-harvest quality, shading reduction in BIA, tailored seedlings production, and off-season cultivation. The results showed that the application of supplemental LED light on greenhouse-grown tomato in Mediterranean countries (Italy and Spain) has potential to foster diverse applications. In particular, it can increase production in case of the limited solar radiation in rooftop greenhouses, maintain quality and reduce losses during post-harvest, help producing high quality and tailored seedlings, and increase yield during wintertime. Despite the positive results obtained, some aspects of the application of additional LED light in Southern Europe countries still need to be deepened and improved. In particular, given the current increase of electricity cost, future research should focus on more economically valuable methods of managing supplemental lighting, such as the application of shorter photoperiods or lower intensities, or techniques that can provide energy savings such as the pulsed light.
Resumo:
City streets carry a lot of information that can be exploited to improve the quality of the services the citizens receive. For example, autonomous vehicles need to act accordingly to all the element that are nearby the vehicle itself, like pedestrians, traffic signs and other vehicles. It is also possible to use such information for smart city applications, for example to predict and analyze the traffic or pedestrian flows. Among all the objects that it is possible to find in a street, traffic signs are very important because of the information they carry. This information can in fact be exploited both for autonomous driving and for smart city applications. Deep learning and, more generally, machine learning models however need huge quantities to learn. Even though modern models are very good at gener- alizing, the more samples the model has, the better it can generalize between different samples. Creating these datasets organically, namely with real pictures, is a very tedious task because of the wide variety of signs available in the whole world and especially because of all the possible light, orientation conditions and con- ditions in general in which they can appear. In addition to that, it may not be easy to collect enough samples for all the possible traffic signs available, cause some of them may be very rare to find. Instead of collecting pictures manually, it is possible to exploit data aug- mentation techniques to create synthetic datasets containing the signs that are needed. Creating this data synthetically allows to control the distribution and the conditions of the signs in the datasets, improving the quality and quantity of training data that is going to be used. This thesis work is about using copy-paste data augmentation to create synthetic data for the traffic sign recognition task.