943 resultados para Songs (High voice) with orchestra
Resumo:
Frequency response of a fiber ring resonator (FRR) composed of an ordinary optical coupler and a segment of optical fiber is theoretically and experimentally investigated. The frequency response equation based oil small-signal modulation is derived and studied in detail. It is shown that the shape of the frequency response curve is very sensitive to the wavelength; as a result, the FRR can be applied to measure the wavelength of a lightwave source with high resolution. With this method, we demonstrate the measurement of tiny changes of wavelength of a DFB laser. (C) 2009 Wiley Periodicals. Inc. Microwave Opt Technol Lett 51 2444-2448, 2009 Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24608
Resumo:
The accurate cancer classification is of great importance in clinical treatment. Recently, the DNA microarray technology provides a promising approach to the diagnosis and prognosis of cancer types. However, it has no perfect method for the multiclass classification problem. The difficulty lies in the fact that the data are of high dimensionality with small sample size. This paper proposed an automatic classification method of multiclass cancers based on Biomimetic pattern recognition (BPR). To the public GCM data set, the average correct classification rate reaches 80% under the condition that the correct rejection rate is 81%.
Resumo:
We observed a transition from film to vertically well-aligned nanorods for ZnO grown on sapphire (0001) substrates by metalorganic chemical vapor deposition. A growth mechanism was proposed to explain such a transition. Vertically well-aligned homogeneous nanorods with average diameters of similar to 30, 45, 60, and 70 nm were grown with the c-axis orientation. Raman scattering showed that the E-2 (high) mode shifted to high frequency with the decrease of nanorod diameters, which revealed the dependence of nanorod diameters on the stress state. This dependence suggests a stress-driven diameter-controlled mechanism for ZnO nanorod arrays grown on sapphire (0001) substrates. (c) 2005 American Institute of Physics.
Resumo:
Condensation of steam in a single microchannel, silicon test section was investigated visually at low flow rates. The microchannel was rectangular in cross-section with a depth of 30 pm, a width of 800 mu m and a length of 5.0 mm, covered with a Pyrex glass to allow for visualization of the bubble formation process. By varying the cooling rate during condensation of the saturated water vapor, it was possible to control the shape, size and frequency of the bubbles formed. At low cooling rates using only natural air convection from the ambient environment, the flow pattern in the microchannel consisted of a nearly stable elongated bubble attached upstream (near the inlet) that pinched off into a train of elliptical bubbles downstream of the elongated bubble. It was observed that these elliptical bubbles were emitted periodically from the tip of the elongated bubble at a high frequency, with smaller size than the channel width. The shape of the emitted bubbles underwent modifications shortly after their generation until finally becoming a stable vertical ellipse, maintaining its shape and size as it flowed downstream at a constant speed. These periodically emitted elliptical bubbles thus formed an ordered bubble sequence (train). At higher cooling rates using chilled water in a copper heat sink attached to the test section, the bubble formation frequency increased significantly while the bubble size decreased, all the while forming a perfect bubble train flowing downstream of the microchannel. The emitted bubbles in this case immediately formed into a circular shape without any further modification after their separation from the elongated bubble upstream. The present study suggests that a method for controlling the size and generation frequency of microbubbles could be so developed, which may be of interest for microfluidic applications. The breakup of the elongated bubble is caused by the large Weber number at the tip of the elongated bubble induced by the maximum vapor velocity at the centerline of the microchannel inside the elongated bubble and the smaller surface tension force of water at the tip of the elongated bubble.
Resumo:
For steady-state heat conduction a new variational functional for a unit cell of composites with periodic microstructures is constructed by considering the quasi-periodicity of the temperature field and in the periodicity of the heat flux fields. Then by combining with the eigenfunction expansion of complex potential which satisfies the fiber-matrix interface conditions, an eigenfunction expansion-variational method (EEVM) based on a unit cell is developed. The effective transverse thermal conductivities of doubly-periodic fiber reinforced composites are calculated, and the first-order approximation formula for the square and hexagonal arrays is presented,which is convenient for engineering application. The numerical results show a good convergency of the presented method, even through the fiber volume fraction is relatively high. Comparisons with the existing analytical and experimental results are made to demonstrate the accuracy and validity of the first-order approximation formula for the hexagonal array.
Resumo:
土壤微生物(Soil microbes)是生态系统的重要组成部分,它参与土壤中复杂有机物质的分解和再合成,也参与C、N、S、P等的循环。土壤酶(Soil enzyme)是土壤中具有生物活性的蛋白质,它与微生物一起推动着土壤的生物化学过程,并在树木营养物质的转化中起着重要的作用。鉴于土壤微生物和土壤酶对环境变化的敏感性,它们在CO2浓度和温度升高时的反应将在很大程度上影响森林生态系统的结构和功能。因此,要全面评价大气CO2浓度和温度升高对整个生态系统的影响,有必要对CO2浓度和温度升高条件下的土壤微生物的反应进行深入的研究与探讨。本文应用自控、封闭、独立的生长室系统,研究了川西亚高山岷江冷杉(Abies faxoniana)根际、非根际土壤微生物数量,红桦(Betula albosinensis)根际微生物数量以及根际、非根际土壤酶活性对大气CO2浓度(环境CO2浓度+350±25μmol·mol-1,EC)和温度(环境温度+2.0±0.5℃,ET)升高及两者同时升高(ECT)的响应。结果表明: 1) EC和ET显著增加岷江冷杉根际微生物数量,但不同微生物种类对EC和ET的反应有所差异。6、8和10月,岷江冷杉根际微生物数量与对照(CK)相比,EC处理的根际细菌数量分别增加了35%、164%和312%,ET处理增加了30%、115%和209%;EC和ET处理对根际放线菌和根际真菌数量影响不显著。ECT处理的根际放线菌数量分别增加了49%、50%和96%,根际真菌数量增加了151%、57%和48%;而ECT对根际细菌数量影响不显著。EC、ET和ECT处理对岷江冷杉土壤微生物总数的根际效应明显,其R/S值分别为1.93、1.37和1.46(CK的R/S值为0.81)。 2) 红桦根际微生物数量对EC、ET和ECT的响应不同。生长季节(5~10月),高密度的红桦根际细菌数量与CK 相比,EC的根际细菌数量分别增加28%、33%、423%、65%、43%和79%,而低密度的红桦根际细菌数量增加不显著。ET能显著增加根际细菌数量(7~10月),其中高密度的根际细菌数量分别增加了377%、107%、35%、22%,而低密度的根际细菌数量分别增加了27%、27%、64%、48%;ECT对两个密度水平下根际细菌数量均未产生有显著的影响。高、低密度的红桦根际放线菌和根际真菌数量与 CK 相比,EC显著增加了低密度的红桦根际放线菌数量,而对高密度的根际放线菌数量无显著影响;ET和ECT对高低密度的红桦根际放线菌数量均未产生显著影响。EC和ET对高低密度的根际真菌数量也无显著影响,而ECT却显著增加了高低密度的根际真菌数量。 3) EC、ET和ECT处理的低密度红桦根际微生物(细菌、放线菌和真菌)数量没有显著高于或低于高密度根际微生物数量,表明短期内密度对红桦根际微生物数量不产生影响。 4) 不同种类的氧化还原酶对EC、ET和ECT的响应不同。5~10月,EC的红桦根际过氧化氢酶活性是CK 的1.44、1.06、1.11、1.10、1.12和1.24倍,差异显著(6月除外);ET和ECT处理根际过氧化氢酶活性无显著增加。EC的红桦根际多酚氧化酶活性比CK显著增加;ET的根际多酚氧化酶活性显著高于CK(8月除外)。ECT的根际多酚氧化酶活性高于CK,差异不显著。EC的根际脱氢酶活性分别增加了46%、40%、133%、48%、17%和26%,差异显著。5~7月,ET和ECT的根际脱氢酶活性高于CK的脱氢酶活性,而8~9月则相反,差异性均不显著。 5) EC、ET和ECT对不同种类的水解酶的影响不同。EC能显著增加红桦根际脲酶活性,5~10月分别增加了29%、42%,、70%、67%、59%和57%。ET和ECT 对根际脲酶活性未产生显著影响。EC显著提高根际转化酶活性,5、6和9月EC的根际转化酶活性分别比CK高51%、42%和40%。5和10月,ET的根际转化酶活性低于CK,而其余月份却高于CK,但均具有显著性差异。ECT的根际转化酶活性与CK的根际转化酶活性有显著性差异(9月除外),5、6和7月的根际转化酶活性分别提高了94%、198%和67%。 6) 与CK相比,EC、ET和ECT的非根际土壤微生物数量以及非根际土壤酶活性均无显著提高。EC、ET和ECT的过氧化氢酶、脲酶的根际效应明显,而多酚氧化酶和脱氢酶根际效应不明显。EC和ECT的转化酶根际效应明显,而ET的转化酶根际效应不明显。 It is well known that atmospheric CO2 concentration and temperature are increasing as a consequence of human activities. In past decades, considerable efforts had been put into investigating the effects of climate change on processes of forest ecological system. In general, studies had been mainly focused on the effects of elevated atmospheric CO2 on plant physiology and development, litter quality, and soil microorganisms. Studies showed that there was variation in the responses of root development and below-ground processes to climate between different plant communities. Since the concentration of CO2 in soil was much higher (10~50 times) than in the atmosphere, increasing levels of atmospheric CO2 may not directly in fluence below ground processes. Betula albosinensis and Abies faxoniana, as the dominated tree species of subalpine dark coniferous forest in the western Sichuan province, which play an important role in the structure and function of this kind of forest ecosystem. In our study, effects of elevated atmospheric CO2 concentration (350±25μmol·mol-1), increased temperature (2.0±0.5℃) and both of the two on the number of rhizospheric microbe and rhizospheric enzyme activity were studied by the independent and enclosed-top chamber’ system under high-frigid conditions. Responses of rhizospheric bacteria, actinomycetes and fungi number of Betula albosinensis and Abies faxoniana under different densities(high density with 84 stems·m-2, low density with 28 stems·m-2 ), and rhizospheric enzyme activity of Betula albo-sinensis to elevated CO2 concentration and increased temperature were analyzed and discussed. The results are as the following, 1) In comparion with the control, the numbers of rhizospheric bacteria of Abies faxoniana were increased by 35%, 164% and 312% significantly in June, August and October respectively of EC, and were increased by 30%, 115% and 209% respectively of ET.However the effect of EC and ET on rhizospheric actinomycetes and fungi was not significant. The number of rhizospheric actinomycetes of ECT were increased significantly by 49%, 50% and 96% respectively, and the increment of rhizospheric fungi were 151%, 57% and 48% respectively .The effect of ECT on rhizospheric bacteria was not significant. Rhizospheric effect of soil microbe for all treatments was significant, with the R/S of 1.93, 1.27 and 1.46 for EC, ET and ECT, respectively. 2) Treatment EC improved the number of rhizospheric bacteria of Betula albosinensis under high density significantly in comparison with the control, over the growing season, the greatest increment of rhizospheric bacteria was from July. However, EC had no effect on the number of rhizospheric bacteria under low density. Except May and June, treatment ET improved the number of rhizospheric signifcantly. The effect of treatment ECT on the number of rhizospheric bacteria under different densities was not significant. Of treatment EC, the number of rhizospheric actinomycetes of Betula albosinensis under low density were increased significantly, however, treatment EC did not stimulate the number of rhizospheric actinomycetes under high density. Simultaneously, treatment ET and ECT did not stimulate the number of rhizospheric actinomycetes. Finally, in treatment ECT, the number of rhizospheric fungi under high density were increased significantly, however treatment EC and ET did not stimulate the number of rhizospheric fungi under different densities. 3) Of treatment EC, ET and ECT, the number of rhizospheric microbe of Betula albosinensis under low density were not more or fewer than that of microbe under hign density along the growing season, which showed that plant density had no effect on the nmber of microbe. 4) From May to October, 2004,rhizospheric catalase activity of Betula albosinensis of treatment EC was 1.44, 1.06, 1.11, 1.10, 1.12 and 1.24 times as treatment CK respectively, and the difference was statistically significant(except June). Treatment ET and ECT did not increase rhizospheric catalase activity significantly. In treatment EC, the rhizospheric pohyphenol oxidase activity was higher than treatment CK significantly. The rhizospheric pohyphenol oxidase activity of treatment ET was higher than CK significantly (except August). The rhizospheric pohyphenol oxidase activity of treatment ECT was higher than CK, but the difference was not statistically significant. Over the growing period, the rhizospheric dehydrogenase activity were increased 46%, 40%, 133%, 48%, 17% and 26% respectively by treatment EC, and the difference was statistically significant. From May to July, the rhizospheric dehydrogenase activity in treatment ET and ECT was higher than CK, but from August to October, the rhizospheric dehydrogenase activity was lower than CK, the difference was not significant. 5) Treatment EC increased rhizospheric urease activity significantly, from May to October, rhizospheric urease activity were increased 29%, 42%, 70%, 67%, 59% and 57% respectively by EC. Treatment ET and ECT had no effect on rhizospheric urease activity. Treatment EC improved rhizospheric invertase activity significantly, in May, June and September, the rhizospheric invertase activity of treatment EC were increased 51%, 42% and 40% in comparison with the control. Except May and October, the rhizospheric invertase activity of treatment ET was markly higher than CK. The rhizospheric invertase activity of treatment ECT was significantly different from CK (except September), in May, June and July treatment ECT increased rhizospheric invertase activity by 94%, 198% and 67% respectively. 6) In comparison with the control, treatment EC, ET, and ECT had no effect on the number of non-rhizospheric microbe and non-rhizospheric enzyme activity. Rhizospheric effect of catalase and urease for all treatments was significant, but rhizospheric effect of pohyphenol oxidase and dehydrogenase was not significant. Rhizospheric effect of invertase of EC and ECT was significant, but rhizospheric effect of invertase of ET was not significant.
Resumo:
青稞,是我国藏区居民对裸大麦的称谓,它不仅是藏民的主要食粮、燃料和牲畜饲料,而且也是啤酒、医药和保健品生产的原料;青稞不仅为藏区人民的健康和经济发展做出了很大的贡献,而且对人类健康和社会经济的可持续发展都有重要的意义。青藏高原是我国及世界上青稞分布和种植面积最大的地区,资源极其丰富。虽然从经典遗传直到分子标记对我国大麦遗传多样性都有研究,但研究手段、数量仍然不够深入,对我国大麦资源遗传多样性研究的信息非常有限,不能很好地满足大麦遗传研究和育种应用的需要,尤其是对西藏栽培大麦的遗传多样性的研究还只是刚刚开始,关于栽培青稞多态性的研究报道很少。本研究采用SSR标记和蛋白质电泳两类技术,从SSR标记位点、单体醇溶蛋白、B组醇溶蛋白和淀粉粒结合蛋白(SGP)等四个方面对我国青藏高原栽培青稞的遗传多样性进行了综合评价。 SSR标记具有基因组分布广泛、数量丰富、多态性高、容易检测、共显性、结果稳定可靠、实验重现性好、操作简单、经济、易于高通量分析等许多优点,被认为是用于遗传多样性、品种鉴定、物种的系统发育、亲缘关系及起源等研究的非常有效的分子标记。本研究采用SSR标记分析了64份青藏高原栽培青稞的遗传多样性,同时评估SSR标记在我国大麦育种和品种鉴定中的应用潜力。选择了30个已知作图位点SSR标记,其中25个标记与重要性状的控制位点连锁紧密。选择的30个SSR标记,5个未得到很好的扩增产物,3个无多态性。22个多态性SSR标记位点中,每位点检测出等位基因2~15个,共检测出等位基因132个,平均每位点6.0 个。各多态位点检测出基因型为2~11种,位点HVM33的基因型最多。各多态位点的多态信息指数为0.16~0.91, 平均为0.65。根据PIC值选择了13个SSR标记用于我国青藏高原栽培青稞基因型鉴定,这些标记的PIC值为0.6以上。结合PIC值和基因型差异,选择了8个多态信息含量高的SSR标记,构建了高效指纹图谱,此图谱能把64份材料完全区分。 贮藏蛋白电泳分析是研究相关编码蛋白基因多态性的非常有效的方法。大麦单体蛋白与小麦醇溶蛋白相对应,具有丰富的多态性,可用于大麦遗传多样性、品种鉴定和群体进化等研究。本研究通过A-PAGE电泳技术研究了84份青藏高原栽培青稞的单体醇溶蛋白多态性。大麦单体醇溶蛋白图谱与小麦醇溶蛋白电泳图谱类似,所分离的蛋白清晰地分为ω-,γ-,β-和α-四个部分。青藏高原栽培青稞单体醇溶蛋白具有丰富的多态性,84份青稞材料中存在43条不同的蛋白带,75种组合带谱;其中67种为单一材料所独有,另8种则分别包含了2-3份材料。每份材料中拥有醇溶蛋白带为6-16条,含有6-10条单体醇溶蛋白带材料较多。西藏和四川材料群体单体醇溶蛋白多态性不同,具有区域特异性。西藏材料中发现了40条不同蛋白带,3条特异带,46 种蛋白组合;四川材料中出现了40种不同蛋白带,26种条带组合, 3条特异带。基于单体蛋白多态性的聚类与材料的来源有一定的相关性。A-PAGE单体蛋白具有丰富的多态性,可作为遗传研究和品种鉴定的标记。 大麦醇溶蛋白(hordein)是大麦籽粒的主要贮藏蛋白,与大麦的营养品质和加工品质密切相关,而且具有丰富的多态性,广泛用于品种鉴定、种质筛选、遗传多样性和亲缘关系研究。B组醇溶蛋白是主要的醇溶蛋白组份,约占总醇溶蛋白的80%,而且具有丰富的多态性。本研究采用SDS-PAGE分析了72份青藏高原栽培青稞B组醇溶蛋白的遗传多样性。青藏高原栽培青稞B组醇溶蛋白具有丰富的多态性,72份青稞材料中存在15种蛋白带,30种组合带谱,其中15种为单一材料所独有,另15种则分别包含了2-10份材料。每份材料中B组醇溶蛋白条带数为4-8条,含5、6条的材料较常见。不同来源的群体材料间B组醇溶蛋白组成存在差异,西藏青稞含有26种蛋白组合带谱,其中有19种特异带谱;四川群体中共发现11种蛋白组合带型,其中有4种特有带谱。两群体中都存在稀有条带。聚类分析将材料分成三组,材料聚类与材料来源地没有明显的相关性。 淀粉粒蛋白(Starch granule proteins, SGPs)是一类与淀粉粒结合的微量蛋白,一些淀粉粒蛋白具有淀粉生化合成中主要的酶蛋白功能,其变异会影响淀粉含量和特性,从而影响淀粉的应用。关于我国大麦淀粉粒组成研究还未见报道。本实验首次开创了我国大麦淀粉粒结合蛋白的研究工作。采用SDS-PAGE电泳技术研究了青藏高原栽培青稞的SGP组成,并分析了不同SGP组合间淀粉含量的差异,初步探索了所分离的SGP蛋白与淀粉合成的关系。66份青稞材料中分离了10种主要的SGP,其表观分子量为40-100KD,低于60KD的SGP带有7条,共有16种组合带谱;各SGP蛋白和组合带谱出现的频率存在差异,青藏高原青稞的SGP组成存在多态性。西藏青稞和四川青稞的SGP组成有很大差异,SGP组成具有地域差异性,西藏青稞含有12种蛋白组合带谱,其中有9种特异带谱;四川群体中共发现7种蛋白组合带型,其中有4种特有带谱;两群体中仅有3种共同的蛋白组合带谱。SGP蛋白特性将66份青稞分为三组, 即Ⅰ、Ⅱ、Ⅲ,材料聚类与材料来源具有一定的相关性。不同组合带谱材料间淀粉含量差异显著性检验结果显示,不同带谱间材料的总淀粉含量、直链淀粉含量和支链淀粉含量有差异,带谱2(SGP1+3+7+9+10)和8(SGP1+2+4+6+8)的总淀粉含量及支链淀粉含量显著大于组合带谱3(SGP1+3+7+10)的总淀粉含量。组合带谱7(SGP1+2+6+8)的直链淀粉含量显著低于带谱11(SGP1+5+8)的直链淀粉。带谱SGP2、3、4、5、6、7、8、9、10可能参与淀粉合成,SGP9可能与高支链淀粉的合成相关。 SSR标记位点、单体醇溶蛋白、B组醇溶蛋白、淀粉结合蛋白等四个方面的研究结果表明青藏高原SSR标记多态性、单体醇溶蛋白多态性、B组醇溶蛋白多态性和SGP多态性都非常丰富,与青藏高原是栽培青稞的多样性分布中心的观点一致。 青藏高原栽培青稞的SSR标记、单体醇溶蛋白、B组醇溶蛋白和SGP多态性表现出很大差异。SSR标记覆盖了整个基因组,多态性非常高。单体蛋白、B组醇溶蛋白、SGP蛋白是育种中非常关注的性状,他们只是代表基因组中的某一区域或位点,多态性相对较低。但单体蛋白多态性很高,84份材料中检测出43条不同蛋白带,75种不同的组合带谱。SSR标记技术和单体蛋白技术都是遗传多样性研究的有力工具,但单体蛋白技术不仅多态性高,而且经济、操作简便,是种质鉴定的理想方法。 对不同标记的多态性材料数据进行聚类,聚类图能为我们提供各材料间的遗传相似信息,为材料选择提供参考。但材料聚类与材料来源的地理区域的相关性表现不一致。SSR聚类和B组醇溶蛋白聚类与材料的来源地无相关性,而单体醇溶蛋白和SGP聚类与材料来源地有一定相关性,即西藏群体和四川群体分别有集中类群,这可能是人为选择的附加效应。 不同来源的群体材料的遗传多样性不同,具有区域特异稀有基因,加强不同地区间资源的交换和配合使用,有利于增加群体遗传多样性和新品种培育。 青藏高原栽培青稞的麦芽浸提性状、淀粉性状、病虫及裸粒等重要农艺性状控制位点存在丰富的变异,遗传基础宽广,可能蕴藏着多种不同的等位基因,是研究重要性状遗传特性、基因资源挖掘和遗传育种的宝贵资源库。 Hulless barley, due to its favorable attributes such as high feed value, good human nutrition,rich dietary fiber and ease processing, attracts people,s attention . Hulless barley plays a very important role in Tibetan life, used as essential food crop, main animal feed and important fuel. In addition to tsampa (roasted barley flour), a main food for Tibetan, hulless barley is also made into cake, soup, porridge, recent naked barley liquor and cornmeal. Qinghai-Tibet Plateau is one of a few areas which plant naked barley widely in the world and also has a long growing history. Genetic diversity of the cultivated hulless barley in this region , however, has not been documented. The study of genetic diversity existing within this population is of particular interest in germplasm identification, preservation, and new cultivar development. This study analyzed the genetic diversity of the cultivated naked barley from Qinghai-Tibet plateau through the study of SSR marker loci and monomeric prolamins, B-horden and starch granule proteins. SSRs are present abundantly in genomes of higher organisms and have become a popular marker system in plant studies. SSRs offer a number of advantages, such as the high level of polymorphisms, locus specificity, co-dominance, reproducibility, ease of use through PCRand random distribution throughout the genome. In barley, several hundred SSRs have been developed and genetically mapped and can therefore be selected from specific genomic regions. The genetic diversity of 64 cultivated naked barley from Tibet and Sichuan was studied with 30 SSRs of known map location.Among the selected SSR markers, PCR products of 5 SSR markers were not obtained and 3 SSR marker loci were monomeric. A total of 132 alleles were identified at 22 polyomeric SSR loci. The number of alleles per locus ranged from 2 to 15, with an average of 6.0. The polymorphism information content values for the SSRs ranged from 0.08 to 0.94, with an average of 0.65. 13 SSR markers with the PIC value >0.6 have been selected for discrimination of Qinghai-Tibet naked barley genotypews. A finger Print map was developed through 7 SSR markers with the high PIC value. It could be used as an efficient tool for gene discovery and identification of gernplasm. Hordeins, the main storage proteins of the barley seed, are composed of momomeric and polymeric prolamins and divided into -A, B, C and D groups in order of decreasing electrophoretic mobility. Hordeins show high inter-genotypic variation and have been extensively used as markers for cultivar identification and analyzing the genetic diversity. This study analyzed the genetic diversity of B-hordein in 72 naked barley from Qinqhai-Tibet Plateau. Extensive diversity was observed. A total of 15 different bands and 30 distinct patterns were found. Jaccard's coefficient of similarity was calculated, and the accessions were divided into three main groups by cluster analysis using UPGMA. Differentiation among the populations from different collecting regions based on the polymorphism of B-hordein was investigated. Monomeric prolamins show high inter-genotypic variation and have been used as molecular markers for cultivar identification, analyzing the genetic diversity in collections and investigating the evolution processes and structure of populations However, the cultivated hulless accessions from Qinghai-Tibet Pateau in China have never been examined with respect to monomeric prolamins. This study analyzed the genetic diversity of monomeric prolamins (protein fraction corresponding to wheat gliadins) using the Acid -PAGE technique in eighty-four cultivated hulless barley from Qinqhai-Tibet Plateau in China. Extensive diversity was observed. A total of 43 different bands were found, of which 21 different bands were in the region of ω group, 8 in the region of γ, 8 in the region of β, and 6 in the region of α group. Among the 86 accessions, 75 distinct patterns were identified. The number of bands ranged from 6 to 16, depending on the variety. Jaccard’s coefficient of similarity was calculated, and the lines were grouped by cluster analysis using UPGMA. A dendrogram was obtained from the analysis of the groups and five main clusters were identified. No relationship between the distribution in the dendrogram and growth habits and origins of the cultivars could be detected. Starch is the major constituent of the cereal endosperm, comprising approximately 65% of the dry weight of the mature wheat grain. The starch formed in all organs of plants is packaged into starch granules, which vary widely between species and cultivars in size and shape. Wheat endosperm starch granules contain about corresponding to the main biosynthase of starch. This report firstly dealed with intraspecific variation of the major SGPs in cultivated naked barley from Qinghai-Tibet plateau. A total of 10 major SGPs were observed in the range of 40KD-100KD and 16 types of patterns were found. Based on the variation of SGPs, accessions studied were classified into 3 groups. A geographical cline of electrophoregram was observed. In addition, significance test of the difference of starch content among groups and types of patterns were done, and the results indicated those SGPs could be related to the content of starch. Diagram obtained through cluster analysis exhibited a structuration of diversity and genetic relationship among cultivated hulless accessions. In breeding program, parents with genetically distant relationship for hybridization will increase genetic diversity of progenies. In conclusion, cultivated naked barley from Qinghai-Tibet Plateau in China presents a high variability with respect to monomeric prolamins,SSR markers , B- hordeins and SGPs. The result of this study supports Qinghai-Tibet Plateau is the center of cultivated hulless barley and the cultivated naked barley is considered to be a gene pool with large diversity and could be applied to breeding for cereal.
Resumo:
A novel PEMFC catalytic layer was fabricated by a Nafion-pyrolyzed method, which demonstrated a high performance with a maximum power density of 0.82 W/cm(2) on an electrode prepared by this method. The effects of the heat-treatment temperature and Nation content in the catalyst layer on performance were studied.
Resumo:
A new class of ionophores with troponoid and thiocrown ether units was prepared. Cation-binding properties of troponoid dithiocrown ethers were characterized using UV and NMR spectroscopies. They have affinity with metal ions; in particular, they showed high affinity with Hg2+. Transport of Hg2+ through a CHCl3 liquid membrane with troponoid dithiocrown ethers was examined in a U-type cell. From an aqueous solution of HgCl2 and CuCl2, Hg2+ is transferred selectively and smoothly, while the Cu2+ remained quantitatively in the original solution. The cavity size of dithiocrown ethers is one of the requirements for effective extraction and transport of Hg2+. However, derivatives with a smaller cavity still extract and transport Hg2+. A polymer-supported troponoid dithiocrown ether was prepared to transport Hg2+ effectively and repeatedly. Comparing the troponoid dithiocrown ether with the benzenoid dithiocrown ether with a similar cavity size, the former was more effective for the transport of Hg2+. It is proposed that the tropone ring assisted the release of Hg2+ from the complex by Coulomb repulsion between the protonated tropone ring and Hg2+.
Resumo:
Uniform Gd(OH)(3) nanotubes have been prepared via a simple wet-chemical route at ambient pressure and low temperature, without any catalysts, templates, or substrates, in which Gd(NO3)(3) was used as the gallium source and ammonia as the alkali. SEM and TEM images indicate that the as-obtained Gd(OH)3 entirely consists of uniform nanotubes in high yield with diameters of about 40 nm and lengths of 200-300 nm. The temperature-dependent morphological evolution and the formation mechanism of the Gd(OH)(3) nanotubes were investigated in detail. Furthermore, the Gd2O3 and Eu3+-doped Gd2O3 nanotubes, which inherit their parents' morphology, were obtained during a direct annealing process in air. The corresponding Gd2O3:Eu3+ nanotubes exhibit the strong red emission corresponding to the D-5(0)-F-7(2), transition of the Eu3+ ions under UV light or low-voltage electron beam excitation, which might find potential applications in the fields such as light-emitting phosphors, advanced flat panel displays, or biological labeling.
Resumo:
Several organic electroluminescent devices with different device structures were fabricated based on an organosamarium complex Sm(HFNH)(3)phen[HFNH=4, 4, 5, 5, 6, 6, 6-heptafluoro-l-(2-naphthvl)hexane-1, 3-dione; phen=1, 10-phenanthroline] as emitter. Their electroluminescent properties were investigated in detail. Although the devices with the optimal structure ITO/TPD (50nm)/ Sm(HFNH)(3)phen (xwt%):CBP (50nm)/BCP (20nm)/AIQ (30nm)/LiF (1 nm),/Al (200nm) show high brightness (more than 400cd/m(2)) and high current efficiency (about 1 cd/A), there are emissions from CBP, BCP and even from AIQ existing in the electroluminescence (EL) spectra besides emission from Sm(HFNH)(3)Phen. The reason to this was discussed. The device with the structure ITO/TPD (50 nm)/ Sm(HFNH)(3)phen (50 nm)/AIQ (30 nm)/LiF (1 nm)/Al (200 nm) exhibits the maximum brightness of 118 cd/m(2) and current efficiency of 0.029 cd/A, and shows emissions from AIQ and Sm(HFNH)(3)phen at high voltages. However, with the BCP hole-block layer added, the device [ITO/TPD (50 nm)/Sm(HFNH)(3)phen (50 nm)/BCP (20 nm)/AIQ (30 nm)/LiF (1 nm)/Al (200 nm)] exhibits pure Sm3+ emission in 2 the EL spectra even at high voltages, with the maximum current efficiency of 0.29cd/A and brightness of 82cd/m(2)
Resumo:
A hybrid thin film containing Pt nanoparticles and [tetrakis(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) modified multi-walled carbon nanotubes (MWNTs) on a glassy carbon (GC) electrode surface was fabricated. This hybrid film electrode exhibited remarkable electrocatalytic activity for oxygen reduction and high stability with promising applications in fuel cells.
Resumo:
GRP78 (78 kDa glucose-regulated protein), also known as BiP (immunoglobulin heavy-chain-binding protein), is an essential regulator of endoplasmic reticulum (ER) homeostasis because of its multiple functions in protein folding, ER calcium binding, and controlling of the activation of transmembrane ER stress sensors. In this report, we cloned the full length cDNA of GRP78 (FcGRP78) from Chinese shrimp Fenneropenaeus chinensis. This cDNA revealed a 2,325 bp with 1,968 bp open reading frame encoding 655 amino acids. This is the first reported GRP78 gene in Crustacea. The deduced amino acid sequence of FcGRP78 shared high identity with previously reported insect GRP78s: 86, 87 and 85% identity with GRP78s of Drosophila melanogaster, Aedes aegypti and Bombyx mori, respectively. Northern blot analysis shows that FcGRP78 is ubiquitously expressed in tissues of shrimp. Heat shock at 35A degrees C significantly enhanced the expression of FcGRP78 at the first hour, reached the maximum at 4 h post heat shock, dropped after that and resumed to the normal level until 48 h of post recovery at 25A degrees C. Additionally, differential expression of FcGRP78 was detected in haemocytes, hepatopancreas and lymphoid organ when shrimp were challenged by white spot syndrome virus (WSSV). We inferred that FcGRP78 may play important roles in chaperoning, protein folding and immune function of shrimp.
Resumo:
Cyclophilin A (CypA), a receptor for the immunosuppressive agent cyclosporin A (CsA), is a cis-trans peptidyl-prolyl isomerase (PPIase) which accelerates the cis-trans isomerization of prolyl-peptide bonds, interacts with a variety of proteins and therefore regulates their activities. One CypA (designated CfCypA) cDNA was cloned from Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of CfCypA consisted of 1,248 nucleotides with a canonical polyadenylation signal sequence AATAAA, a poly (A) tail, and an open reading frame (ORF) of 495 nucleotides encoding a polypeptide of 164 amino acids. The deduced amino acid sequence shared high similarity with CypA from the other species, indicating that CfCypA should be a new member of the CypA family. Quantitative real-time (RT) PCR was employed to assess the mRNA expression of CfCypA in various tissues and its temporal expression in haemocytes and gonad of scallops challenged with Vibrio anguillarum. The mRNA transcripts of CfCypA could be detected in all the examined tissues with highest expression level in gonad. After bacterial challenge, the expression level of CfCypA was almost unchanged in haemocytes, but up-regulated in gonad and increased to the peak (22.59-fold; P < 0.05) at 4 h post-injection, and then dropped to the original level at 8 h post-injection. These results indicated that CfCypA was constitutive expressed in haemocytes, but could be induced in gonad, and perhaps played a critical role in response to the bacterial challenge in gonad.
Resumo:
A fragment of TNFalpha cDNA sequence from red seabream was cloned by homology cloning approach with two degenerated primers which were designed based on the conserved regions of other animals' TNF sequences. The sequence was elongated by 3' and 5' RACE to get the full length CDS sequence. This sequence contained 1264 nucleotides that included a 5' UTR of 85 bp, a 3' UTR of 514 bp and an open reading frame (ORF) of 666 bp which could encode 222 amino acids propeptide. In 3' UTR, there were several mRNA instability motifs and three endotoxin-responsive sequences, but the sequence lacked the polyadenylation signal. The deduced peptide had a clear transmembrane domain, a TNFalpha family signature and a TNF2 family profile. The cell attachment sequence and the glycosaminoglycan attachment sites were also found in the sequence. The red seabream TNF sequence shared relatively high similarity with both mammalian TNFalpha and TNFbeta by multiple sequence alignments. Phylogenetic analysis showed that the piscine TNFalpha were located independently in a different branch compared with mammalian TNFalpha and TNFbeta. Based on the primary and secondary structure analysis and gene expression study, we could concluded that the red seabream TNF should be a TNFalpha, not TNFbeta. RT-PCR was used to study TNFa transcript expression. 24 h after the red seabream was challenged by Vibrio anguillarum, the RS TNFalpha transcript expression were detected in blood, brain, gill, heart, head kidney, kidney, Ever, muscle and spleen. Results showed that TNFalpha mRNA was constitutively expressed in parts of the tissues both in stimulated and unstimulated fish and the expression could be enhanced after the pathogen infection.