922 resultados para Semiconductor quantum dot


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new design of an optical resonator for generation of single-photon pulses is proposed. The resonator is made of a cylindrical or spherical piece of a polymer squeezed between two flat dielectric mirrors. The mode characteristics of this resonator are calculated numerically. The numerical analysis is backed by a physical explanation. The decay time and the mode volume of the fundamental mode are sufficient for achieving more than 96% probability of generating a single-photon in a single-mode. The corresponding requirement for the reflectivity of the mirrors (similar to 99.9%) and the losses in the polymer ( 100 dB/m) are quite modest. The resonator is suitable for single-photon generation based on optical pumping of a single quantum system such as an organic molecule, a diamond nanocrystal, or a semiconductor quantum dot if they are imbedded in the polymer. (C) 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews our work on controlled growth of self-assembled semiconductor nanostructures, and their application in light-emission devices. High-power, long-life quantum dots (QD) lasers emitting at similar to 1 mu m, red-emitting QD lasers, and long-wavelength QD lasers on GaAs substrates have successfully been achieved by optimizing the growth conditions of QDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various techniques on the growth of self-assembled compound semiconductor nano-structures (quantum dots, QDs) have been tried to enhance the controlling on size, density, emitting wavelength, uniformity in size and ordering in location of the QDs. Optimized growth conditions have been used in the application of the QD materials in opto-electronic devices. High-power long-lifetime quantum-dot laser-diodes (QD-LDs) emitting near 1 mu m, QD-LDs emitting in red-light range, 1.3 mu m QD-LDs on GaAs substrate and quantum-dot super-luminescent diodes (QD-SLDs) have successfully been achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results of photoluminescence spectroscopy and lifetime measurements on thin film hybrid arrays of semiconductor quantum dots and metal nanoparticles embedded in a block copolymer template. The intensity of emission as well as the measured lifetime would be controlled by varying the volume fraction and location of gold nanoparticles in the matrix. We demonstrate the ability to both enhance and quench the luminescence in the hybrids as compared to the quantum dot array films while simultaneously engineering large reduction in luminescence lifetime with incorporation of gold nanoparticles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3483162].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we investigate atomic scale imperfections and fluctuations in the quantum transport properties of novel semiconductor nanostructures. For this purpose, we have developed a numerically efficient supercell model of quantum transport capable of representing potential variations in three dimensions. This flexibility allows us to examine new quantum device structures made possible through state-of-the-art semiconductor fabrication techniques such as molecular beam epitaxy and nanolithography. These structures, with characteristic dimensions on the order of a few nanometers, hold promise for much smaller, faster and more efficient devices than those in present operation, yet they are highly sensitive to structural and compositional variations such as defect impurities, interface roughness and alloy disorder. If these quantum structures are to serve as components of reliable, mass-produced devices, these issues must be addressed.

In Chapter 1 we discuss some of the important issues in resonant tunneling devices and mention some of thier applications. In Chapters 2 and 3, we describe our supercell model of quantum transport and an efficient numerical implementation. In the remaining chapters, we present applications.

In Chapter 4, we examine transport in single and double barrier tunneling structures with neutral impurities. We find that an isolated attractive impurity in a single barrier can produce a transmission resonance whose position and strength are sensitive to the location of the impurity within the barrier. Multiple impurities can lead to a complex resonance structure that fluctuates widely with impurity configuration. In addition, impurity resonances can give rise to negative differential resistance. In Chapter 5, we study interface roughness and alloy disorder in double barrier structures. We find that interface roughness and alloy disorder can shift and broaden the n = 1 transmission resonance and give rise to new resonance peaks, especially in the presence of clusters comparable in size to the electron deBroglie wavelength. In Chapter 6 we examine the effects of interface roughness and impurities on transmission in a quantum dot electron waveguide. We find that variation in the configuration and stoichiometry of the interface roughness leads to substantial fluctuations in the transmission properties. These fluctuations are reduced by an attractive impurity placed near the center of the dot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews recent advances in superradiant (SR) emission in semiconductors at room temperature, a process which has been shown to enable the generation on demand of high power picosecond or subpicosecond pulses across a range of different wavelengths. The different characteristic features of SR emission from semiconductor devices with bulk, quantum-well, and quantum-dot active regions are outlined, and particular emphasis is placed on comparing the characteristic features of SR with those of lasing. Finally, potential applications of SR pulses are discussed. © 1995-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The refractive nonlinearities of InAs/GaAs quantum dots under a dc electric field at photon energies above its band gap energy have been studied using the reflection Z-scan technique. The effect of the dc electric field on the nonlinear response of InAs/GaAs quantum dots showed similar linear and quadratic electro-optic effects as in the linear response regime at low fields. This implies that the electro-optic effect in the nonlinear regime is analogous to the response in the linear regime for semiconductor quantum dots. Our experimental results show the potential for voltage tunability in InAs quantum dot-based nonlinear electro-optic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure and binding energy of a hydrogenic acceptor impurity in 2, 1, and 0-dimensional semiconductor nano-structures (i.e. quantum well (QW), quantum well wire (QWW), and quantum dot (QD)) are studied in the framework of effective-mass envelope-function theory. The results show that (1) the energy levels monotonically decrease as the quantum confinement sizes increase; (2) the impurity energy levels decrease more slowly for QWWs and QDs as their sizes increase than for QWs; (3) the changes of the acceptor binding energies are very complex as the quantum confinement size increases; (4) the binding energies monotonically decrease as the acceptor moves away from the nano-structures' center; (5) as the symmetry decreases, the degeneracy is lifted, and the first binding energy level in the QD splits into two branches. Our calculated results are useful for the application of semiconductor nano-structures in electronic and photoelectric devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure and optical properties of ZnO wurtzite quantum wires with radius R >= 3 nm are studied in the framework of six-band effective-mass envelope function theory. The hole effective-mass parameters of ZnO wurtzite material are calculated by the empirical pseudopotential method. It is found that the electron states are either two-fold or four-fold degenerate. There is a dark exciton effect when the radius R of the ZnO quantum wires is in the range of [3,19.1] nm (dark range in our model). The dark ranges of other wurtzite semiconductor quantum wires are calculated for comparison. The dark range becomes smaller when the |Delta(so)| is larger, which also happens in the quantum-dot systems. The linear polarization factor of ZnO quantum wires is larger when the temperature is higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular beam epitaxy is employed to manufacture self-assembled InAs/AlAs quantum-dot resonant tunneling diodes. The resonant tunneling current is superimposed on the thermal current, and together they make up the total electron transport in devices. Steps in current-voltage characteristics and peaks in capacitance-voltage characteristics are explained as electron resonant tunneling via quantum dots at 77 or 300 K, and thus resonant tunneling is observed at room temperature in III-V quantum-dot materials. Hysteresis loops in the curves are attributed to hot electron injection/emission process of quantum dots, which indicates the concomitant charging/discharging effect. (c) 2006 The Electrochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have fabricated a quantum dot (QD) structure for long-wavelength temperature-insensitive semiconductor laser by introducing a combined InAlAs and InGaAs overgrowth layer on InAs/GaAs QDs. We found that QDs formed on GaAs (100) substrate by InAs deposition followed by the InAlAs and InGaAs combination layer demonstrate two effects: one is the photoluminescence peak redshift towards 1.35 mum at room temperature, the other is that the energy separation between the ground and first excited states can be up to 103 meV. These results are attributed to the fact that InAs/GaAs intermixing caused by In segregation at substrate temperature of 520 degreesC can be considerably suppressed by the thin InAlAs layer and the strain in the quantum dots can be reduced by the combined InAlAs and InGaAs layer. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical and electrical properties of ZnSe self-organized quantum dots were investigated using photoluminescence, capacitance-voltage, and deep level transient Fourier spectroscopy techniques. The temperature dependence of photoluminescence was employed to clarify the mechanism of photoluminescence thermal quenching processes in ZnSe quantum dots. A theoretic fit on considering a two-step quenching processes well explained the experimental data. The apparent carrier concentration profile obtained from capacitance-voltage measurements exhibits an accumulation peak at the depth of about 100nm below the sample surface, which is in good agreement with the location of the quantum dot layer. The electronic ground state of ZnSe quantum dots is determined to be about 0.11 eV below the conduction band of ZnS, which is similar to that obtained by simulating the thermal quenching of ZnSe photoluminescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have fabricated a new self-assembled quantum dot system where InGaAs dots are formed on InAlAs wetting layer and embedded in GaAs matrix. The low-temperature photoluminescence and atomic force microscopy measurements confirm the realization of the structure. In contrast to traditional InAs/Ga(Al)As quantum dots, the temperature dependence of the photoluminescence of the dots in such a structure exhibits an electronically decoupled feature due to a higher energy level of the wetting layer which keeps the dots more isolated from each other. (C) 2001 Published by Elsevier Science B.V.