968 resultados para Partial functional differential equations
Resumo:
The present work has the main goal to study the modeling and simulation of a biphasic separator with induced phase inversion, the MDIF, with the utilization of the finite differences method for the resolution of the partial differencial equations which describe the transport of contaminant s mass fraction inside the equipment s settling chamber. With this aim, was developed the deterministic differential model AMADDA, wich was admensionalizated and then semidiscretizated with the method of lines. The integration of the resultant system of ordinary differential equations was realized by means of a modified algorithm of the Adam-Bashfort- Moulton method, and the sthocastic optimization routine of Basin-Hopping was used in the model s parameter estimation procedure . With the aim to establish a comparative referential for the results obtained with the model AMADDA, were used experimental data presented in previous works of the MDIF s research group. The experimental data and those obtained with the model was assessed regarding its normality by means of the Shapiro-Wilk s test, and validated against the experimental results with the Student s t test and the Kruskal-Wallis s test, depending on the result. The results showed satisfactory performance of the model AMADDA in the evaluation of the MDIF s separation efficiency, being possible to determinate that at 1% significance level the calculated results are equivalent to those determinated experimentally in the reference works
Resumo:
In this article we study the existence of shock wave solutions for systems of partial differential equations of hydrodynamics with viscosity in one space dimension in the context of Colombeau's theory of generalized functions. This study uses the equality in the strict sense and the association of generalized functions (that is the weak equality). The shock wave solutions are given in terms of generalized functions that have the classical Heaviside step function as macroscopic aspect. This means that solutions are sought in the form of sequences of regularizations to the Heaviside function that have to satisfy part of the equations in the strict sense and part of the equations in the sense of association.
Resumo:
A direct version of the boundary element method (BEM) is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs). Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state ( membrane) and for the out-of-plane state ( bending). These uncoupled systems are joined to formamacro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs). A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We associate to an arbitrary Z-gradation of the Lie algebra of a Lie group a system of Riccati-type first order differential equations. The particular cases under consideration are the ordinary Riccati and the matrix Riccati equations. The multidimensional extension of these equations is given. The generalisation of the associated Redheffer-Reid differential systems appears in a natural way. The connection between the Toda systems and the Riccati-type equations in lower and higher dimensions is established. Within this context the integrability problem for those equations is studied. As an illustration, some examples of the integrable multidimensional Riccati-type equations related to the maximally nonabelian Toda systems are given.
Resumo:
In this Letter we investigate Lie symmetries of a (2 + 1)-dimensional integrable generalization of the Camassa-Holm (CH) equation. Through the similarity reductions we obtain four different (1 + 1)-dimensional systems of partial differential equations in which one of them turns out to be a (1 + 1)-dimensional CH equation. We establish their integrability by providing the Lax pair for all of them. Further, we present a brief analysis for some types of particular solutions which include the cuspon, peakon and soliton solutions for the two-dimensional generalization of the CH equation. (C) 2000 Published by Elsevier B.V. B.V.
Resumo:
In this paper, we study the travelling wave reductions for certain (2 + 1)- and (3 + 1)-dimensional physically important nonlinear evolutionary equations by using the recently proposed Homogenous Balance Method (HBM). Through this analysis we explore certain new solutions for the equations we have studied. (C) 2001 Published by Elsevier B.V.
Resumo:
In this paper, we investigate the invariance and integrability properties of an integrable two-component reaction-diffusion equation. We perform Painleve analysis for both the reaction-diffusion equation modelled by a coupled nonlinear partial differential equations and its general similarity reduced ordinary differential equation and confirm its integrability. Further, we perform Lie symmetry analysis for this model. Interestingly our investigations reveals a rich variety of particular solutions, which have not been reported in the literature, for this model. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We suggest a pseudospectral method for solving the three-dimensional time-dependent Gross-Pitaevskii (GP) equation, and use it to study the resonance dynamics of a trapped Bose-Einstein condensate induced by a periodic variation in the atomic scattering length. When the frequency of oscillation of the scattering length is an even multiple of one of the trapping frequencies along the x, y or z direction, the corresponding size of the condensate executes resonant oscillation. Using the concept of the differentiation matrix, the partial-differential GP equation is reduced to a set of coupled ordinary differential equations, which is solved by a fourth-order adaptive step-size control Runge-Kutta method. The pseudospectral method is contrasted with the finite-difference method for the same problem, where the time evolution is performed by the Crank-Nicholson algorithm. The latter method is illustrated to be more suitable for a three-dimensional standing-wave optical-lattice trapping potential.
Resumo:
We study the existence of homoclic solutions for reversible Hamiltonian systems taking the family of differential equations u(iv) + au - u +f(u, b) = 0 as a model, where fis an analytic function and a, b real parameters. These equations are important in several physical situations such as solitons and in the existence of finite energy stationary states of partial differential equations, but no assumptions of any kind of discrete symmetry is made and the analysis here developed can be extended to others Hamiltonian systems and successfully employed in situations where standard methods fail. We reduce the problem of computing these orbits to that of finding the intersection of the unstable manifold with a suitable set and then apply it to concrete situations. We also plot the homoclinic values configuration in parameters space, giving a picture of the structural distribution and a geometrical view of homoclinic bifurcations. (c) 2005 Published by Elsevier B.V.
Resumo:
This work concerns the application of the optimal control theory to Dengue epidemics. The dynamics of this insect-borne disease is modelled as a set of non-linear ordinary differential equations including the effect of educational campaigns organized to motivate the population to break the reproduction cycle of the mosquitoes by avoiding the accumulation of still water in open-air recipients. The cost functional is such that it reflects a compromise between actual financial spending (in insecticides and educational campaigns) and the population health (which can be objectively measured in terms of, for instance, treatment costs and loss of productivity). The optimal control problem is solved numerically using a multiple shooting method. However, the optimal control policy is difficult to implement by the health authorities because it is not practical to adjust the investment rate continuously in time. Therefore, a suboptimal control policy is computed assuming, as the admissible set, only those controls which are piecewise constant. The performance achieved by the optimal control and the sub-optimal control policies are compared with the cases of control using only insecticides when Breteau Index is greater or equal to 5 and the case of no-control. The results show that the sub-optimal policy yields a substantial reduction in the cost, in terms of the proposed functional, and is only slightly inferior to the optimal control policy. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
For eta >= 0, we consider a family of damped wave equations u(u) + eta Lambda 1/2u(t) + au(t) + Lambda u = f(u), t > 0, x is an element of Omega subset of R-N, where -Lambda denotes the Laplacian with zero Dirichlet boundary condition in L-2(Omega). For a dissipative nonlinearity f satisfying a suitable growth restrictions these equations define on the phase space H-0(1)(Omega) x L-2(Omega) semigroups {T-eta(t) : t >= 0} which have global attractors A(eta) eta >= 0. We show that the family {A(eta)}(eta >= 0), behaves upper and lower semi-continuously as the parameter eta tends to 0(+).
Resumo:
A simple mathematical model is developed to explain the appearance of oscillations in the dispersal of larvae from the food source in experimental populations of certain species of blowflies. The life history of the immature stage in these flies, and in a number of other insects, is a system with two populations, one of larvae dispersing on the soil and the other of larvae that burrow in the soil to pupate. The observed oscillations in the horizontal distribution of buried pupae at the end of the dispersal process are hypothesized to be a consequence of larval crowding at a given point in the pupation substrate. It is assumed that dispersing larvae are capable of perceiving variations in density of larvae buried at a given point in the substrate of pupation, and that pupal density may influence pupation of dispersing larvae. The assumed interaction between dispersing larvae and the larvae that are burrowing to pupate is modeled using the concept of non-local effects. Numerical solutions of integro-partial differential equations developed to model density-dependent immature dispersal demonstrate that variation in the parameter that governs the non-local interaction between dispersing and buried larvae induces oscillations in the final horizontal distribution of pupae. (C) 1997 Academic Press Limited.
Resumo:
The element-free Galerkin method (EFGM) is a very attractive technique for solutions of partial differential equations, since it makes use of nodal point configurations which do not require a mesh. Therefore, it differs from FEM-like approaches by avoiding the need of meshing, a very demanding task for complicated geometry problems. However, the imposition of boundary conditions is not straightforward, since the EFGM is based on moving-least-squares (MLS) approximations which are not necessarily interpolants. This feature requires, for instance, the introduction of modified functionals with additional unknown parameters such as Lagrange multipliers, a serious drawback which leads to poor conditionings of the matrix equations. In this paper, an interpolatory formulation for MLS approximants is presented: it allows the direct introduction of boundary conditions, reducing the processing time and improving the condition numbers. The formulation is applied to the study of two-dimensional magnetohydrodynamic flow problems, and the computed results confirm the accuracy and correctness of the proposed formulation. (C) 2002 Elsevier B.V. All rights reserved.