459 resultados para Parallelism
Resumo:
Este artículo analiza la eclosión mediática y política del partido político Podemos durante sus primeros meses de vida tras las elecciones europeas. Comprobaremos si el interés que despierta el partido en sus inicios, en intención de voto, se traslada a las audiencias de televisión con dos hipótesis que muestran la estrategia comunicativa de Podemos y su repercusión: la H1 afirma que los programas en los que participa Pablo Iglesias obtienen mayor audiencia de la habitual y la H2 plantea que la apuesta del líder de Podemos por el medio televisivo es muy superior y con mejores resultados con respecto a los partidos clásicos. Los resultados demuestran que los programas en los que participa (N=14) crecen un 62% y baten récord de audiencia. Concluimos que la estrategia comunicativa de Podemos da importancia a la televisión, además de continuar con la estrategia en redes aprendida en el 15M.
Resumo:
The present paper analyses the parallelism existing between academic and professional discourse regarding three interrelated subjects: journalists´ training needs, their adaptation to multimedia profile changes and recognition of University graduates via professional regulation. This study relies on a bibliographical review and brings together the opinion of five professional groups by means of an interview using an openended questionnaire. The results show a coincidence in both discourses regarding the need for firmly grounded training of the journalists with study plans which integrate the new profiles. At the same time, it reflects the discrepancy of the journalistic groups with regard to professional regulation based on the University degree, whose vindication does not appear to be a priority in academic circles.
Resumo:
Graph analytics is an important and computationally demanding class of data analytics. It is essential to balance scalability, ease-of-use and high performance in large scale graph analytics. As such, it is necessary to hide the complexity of parallelism, data distribution and memory locality behind an abstract interface. The aim of this work is to build a scalable graph analytics framework that does not demand significant parallel programming experience based on NUMA-awareness.
The realization of such a system faces two key problems:
(i)~how to develop a scale-free parallel programming framework that scales efficiently across NUMA domains; (ii)~how to efficiently apply graph partitioning in order to create separate and largely independent work items that can be distributed among threads.
Resumo:
With security and surveillance, there is an increasing need to process image data efficiently and effectively either at source or in a large data network. Whilst a Field-Programmable Gate Array (FPGA) has been seen as a key technology for enabling this, the design process has been viewed as problematic in terms of the time and effort needed for implementation and verification. The work here proposes a different approach of using optimized FPGA-based soft-core processors which allows the user to exploit the task and data level parallelism to achieve the quality of dedicated FPGA implementations whilst reducing design time. The paper also reports some preliminary
progress on the design flow to program the structure. An implementation for a Histogram of Gradients algorithm is also reported which shows that a performance of 328 fps can be achieved with this design approach, whilst avoiding the long design time, verification and debugging steps associated with conventional FPGA implementations.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Les courriels Spams (courriels indésirables ou pourriels) imposent des coûts annuels extrêmement lourds en termes de temps, d’espace de stockage et d’argent aux utilisateurs privés et aux entreprises. Afin de lutter efficacement contre le problème des spams, il ne suffit pas d’arrêter les messages de spam qui sont livrés à la boîte de réception de l’utilisateur. Il est obligatoire, soit d’essayer de trouver et de persécuter les spammeurs qui, généralement, se cachent derrière des réseaux complexes de dispositifs infectés, ou d’analyser le comportement des spammeurs afin de trouver des stratégies de défense appropriées. Cependant, une telle tâche est difficile en raison des techniques de camouflage, ce qui nécessite une analyse manuelle des spams corrélés pour trouver les spammeurs. Pour faciliter une telle analyse, qui doit être effectuée sur de grandes quantités des courriels non classés, nous proposons une méthodologie de regroupement catégorique, nommé CCTree, permettant de diviser un grand volume de spams en des campagnes, et ce, en se basant sur leur similarité structurale. Nous montrons l’efficacité et l’efficience de notre algorithme de clustering proposé par plusieurs expériences. Ensuite, une approche d’auto-apprentissage est proposée pour étiqueter les campagnes de spam en se basant sur le but des spammeur, par exemple, phishing. Les campagnes de spam marquées sont utilisées afin de former un classificateur, qui peut être appliqué dans la classification des nouveaux courriels de spam. En outre, les campagnes marquées, avec un ensemble de quatre autres critères de classement, sont ordonnées selon les priorités des enquêteurs. Finalement, une structure basée sur le semiring est proposée pour la représentation abstraite de CCTree. Le schéma abstrait de CCTree, nommé CCTree terme, est appliqué pour formaliser la parallélisation du CCTree. Grâce à un certain nombre d’analyses mathématiques et de résultats expérimentaux, nous montrons l’efficience et l’efficacité du cadre proposé.
Resumo:
This chapter describes a parallel optimization technique that incorporates a distributed load-balancing algorithm and provides an extremely fast solution to the problem of load-balancing adaptive unstructured meshes. Moreover, a parallel graph contraction technique can be employed to enhance the partition quality and the resulting strategy outperforms or matches results from existing state-of-the-art static mesh partitioning algorithms. The strategy can also be applied to static partitioning problems. Dynamic procedures have been found to be much faster than static techniques, to provide partitions of similar or higher quality and, in comparison, involve the migration of a fraction of the data. The method employs a new iterative optimization technique that balances the workload and attempts to minimize the interprocessor communications overhead. Experiments on a series of adaptively refined meshes indicate that the algorithm provides partitions of an equivalent or higher quality to static partitioners (which do not reuse the existing partition) and much more quickly. The dynamic evolution of load has three major influences on possible partitioning techniques; cost, reuse, and parallelism. The unstructured mesh may be modified every few time-steps and so the load-balancing must have a low cost relative to that of the solution algorithm in between remeshing.
Resumo:
Many-core systems are emerging from the need of more computational power and power efficiency. However there are many issues which still revolve around the many-core systems. These systems need specialized software before they can be fully utilized and the hardware itself may differ from the conventional computational systems. To gain efficiency from many-core system, programs need to be parallelized. In many-core systems the cores are small and less powerful than cores used in traditional computing, so running a conventional program is not an efficient option. Also in Network-on-Chip based processors the network might get congested and the cores might work at different speeds. In this thesis is, a dynamic load balancing method is proposed and tested on Intel 48-core Single-Chip Cloud Computer by parallelizing a fault simulator. The maximum speedup is difficult to obtain due to severe bottlenecks in the system. In order to exploit all the available parallelism of the Single-Chip Cloud Computer, a runtime approach capable of dynamically balancing the load during the fault simulation process is used. The proposed dynamic fault simulation approach on the Single-Chip Cloud Computer shows up to 45X speedup compared to a serial fault simulation approach. Many-core systems can draw enormous amounts of power, and if this power is not controlled properly, the system might get damaged. One way to manage power is to set power budget for the system. But if this power is drawn by just few cores of the many, these few cores get extremely hot and might get damaged. Due to increase in power density multiple thermal sensors are deployed on the chip area to provide realtime temperature feedback for thermal management techniques. Thermal sensor accuracy is extremely prone to intra-die process variation and aging phenomena. These factors lead to a situation where thermal sensor values drift from the nominal values. This necessitates efficient calibration techniques to be applied before the sensor values are used. In addition, in modern many-core systems cores have support for dynamic voltage and frequency scaling. Thermal sensors located on cores are sensitive to the core's current voltage level, meaning that dedicated calibration is needed for each voltage level. In this thesis a general-purpose software-based auto-calibration approach is also proposed for thermal sensors to calibrate thermal sensors on different range of voltages.
Resumo:
Small-colony variants (SCVs) are commonly observed in evolution experiments and clinical isolates, being associated with antibiotic resistance and persistent infections. We recently observed the repeated emergence of Escherichia coli SCVs during adaptation to the interaction with macrophages. To identify the genetic targets underlying the emergence of this clinically relevant morphotype, we performed whole-genome sequencing of independently evolved SCV clones. We uncovered novel mutational targets, not previously associated with SCVs (e.g. cydA, pepP) and observed widespread functional parallelism. All SCV clones had mutations in genes related to the electron-transport chain. As SCVs emerged during adaptation to macrophages, and often show increased antibiotic resistance, we measured SCV fitness inside macrophages and measured their antibiotic resistance profiles. SCVs had a fitness advantage inside macrophages and showed increased aminoglycoside resistance in vitro, but had collateral sensitivity to other antibiotics (e.g. tetracycline). Importantly, we observed similar results in vivo. SCVs had a fitness advantage upon colonization of the mouse gut, which could be tuned by antibiotic treatment: kanamycin (aminoglycoside) increased SCV fitness, but tetracycline strongly reduced it. Our results highlight the power of using experimental evolution as the basis for identifying the causes and consequences of adaptation during host-microbe interactions.
Resumo:
Processors with large numbers of cores are becoming commonplace. In order to utilise the available resources in such systems, the programming paradigm has to move towards increased parallelism. However, increased parallelism does not necessarily lead to better performance. Parallel programming models have to provide not only flexible ways of defining parallel tasks, but also efficient methods to manage the created tasks. Moreover, in a general-purpose system, applications residing in the system compete for the shared resources. Thread and task scheduling in such a multiprogrammed multithreaded environment is a significant challenge. In this thesis, we introduce a new task-based parallel reduction model, called the Glasgow Parallel Reduction Machine (GPRM). Our main objective is to provide high performance while maintaining ease of programming. GPRM supports native parallelism; it provides a modular way of expressing parallel tasks and the communication patterns between them. Compiling a GPRM program results in an Intermediate Representation (IR) containing useful information about tasks, their dependencies, as well as the initial mapping information. This compile-time information helps reduce the overhead of runtime task scheduling and is key to high performance. Generally speaking, the granularity and the number of tasks are major factors in achieving high performance. These factors are even more important in the case of GPRM, as it is highly dependent on tasks, rather than threads. We use three basic benchmarks to provide a detailed comparison of GPRM with Intel OpenMP, Cilk Plus, and Threading Building Blocks (TBB) on the Intel Xeon Phi, and with GNU OpenMP on the Tilera TILEPro64. GPRM shows superior performance in almost all cases, only by controlling the number of tasks. GPRM also provides a low-overhead mechanism, called “Global Sharing”, which improves performance in multiprogramming situations. We use OpenMP, as the most popular model for shared-memory parallel programming as the main GPRM competitor for solving three well-known problems on both platforms: LU factorisation of Sparse Matrices, Image Convolution, and Linked List Processing. We focus on proposing solutions that best fit into the GPRM’s model of execution. GPRM outperforms OpenMP in all cases on the TILEPro64. On the Xeon Phi, our solution for the LU Factorisation results in notable performance improvement for sparse matrices with large numbers of small blocks. We investigate the overhead of GPRM’s task creation and distribution for very short computations using the Image Convolution benchmark. We show that this overhead can be mitigated by combining smaller tasks into larger ones. As a result, GPRM can outperform OpenMP for convolving large 2D matrices on the Xeon Phi. Finally, we demonstrate that our parallel worksharing construct provides an efficient solution for Linked List processing and performs better than OpenMP implementations on the Xeon Phi. The results are very promising, as they verify that our parallel programming framework for manycore processors is flexible and scalable, and can provide high performance without sacrificing productivity.
Resumo:
Non-finite clauses are sentential constituents with a verbal head that lacks a morphological specification for tense and agreement. In this paper I contend that these clauses are defective not only morphologically but also syntactically, in the sense that they all lack some of the functional categories that make up a full sentence. In particular I argue that to-infinitive clauses, gerund(ive) clauses and participial clauses differ among themselves, and with respect to other subordinate clauses, in the degree of structural defectiveness they display, which goes from the almost complete functional structure of the infinitive to the maximal degree of syntactic truncation of participial clauses (analyzed here as verbal small clauses). I also show the significant parallelism that exists in this respect between English and Spanish non-finite clauses, pointing to the implication this may have for a cross-linguistic approach to the cartography of syntactic structures.
Resumo:
Solving linear systems is an important problem for scientific computing. Exploiting parallelism is essential for solving complex systems, and this traditionally involves writing parallel algorithms on top of a library such as MPI. The SPIKE family of algorithms is one well-known example of a parallel solver for linear systems. The Hierarchically Tiled Array data type extends traditional data-parallel array operations with explicit tiling and allows programmers to directly manipulate tiles. The tiles of the HTA data type map naturally to the block nature of many numeric computations, including the SPIKE family of algorithms. The higher level of abstraction of the HTA enables the same program to be portable across different platforms. Current implementations target both shared-memory and distributed-memory models. In this thesis we present a proof-of-concept for portable linear solvers. We implement two algorithms from the SPIKE family using the HTA library. We show that our implementations of SPIKE exploit the abstractions provided by the HTA to produce a compact, clean code that can run on both shared-memory and distributed-memory models without modification. We discuss how we map the algorithms to HTA programs as well as examine their performance. We compare the performance of our HTA codes to comparable codes written in MPI as well as current state-of-the-art linear algebra routines.
Resumo:
Due to the growth of design size and complexity, design verification is an important aspect of the Logic Circuit development process. The purpose of verification is to validate that the design meets the system requirements and specification. This is done by either functional or formal verification. The most popular approach to functional verification is the use of simulation based techniques. Using models to replicate the behaviour of an actual system is called simulation. In this thesis, a software/data structure architecture without explicit locks is proposed to accelerate logic gate circuit simulation. We call thus system ZSIM. The ZSIM software architecture simulator targets low cost SIMD multi-core machines. Its performance is evaluated on the Intel Xeon Phi and 2 other machines (Intel Xeon and AMD Opteron). The aim of these experiments is to: • Verify that the data structure used allows SIMD acceleration, particularly on machines with gather instructions ( section 5.3.1). • Verify that, on sufficiently large circuits, substantial gains could be made from multicore parallelism ( section 5.3.2 ). • Show that a simulator using this approach out-performs an existing commercial simulator on a standard workstation ( section 5.3.3 ). • Show that the performance on a cheap Xeon Phi card is competitive with results reported elsewhere on much more expensive super-computers ( section 5.3.5 ). To evaluate the ZSIM, two types of test circuits were used: 1. Circuits from the IWLS benchmark suit [1] which allow direct comparison with other published studies of parallel simulators.2. Circuits generated by a parametrised circuit synthesizer. The synthesizer used an algorithm that has been shown to generate circuits that are statistically representative of real logic circuits. The synthesizer allowed testing of a range of very large circuits, larger than the ones for which it was possible to obtain open source files. The experimental results show that with SIMD acceleration and multicore, ZSIM gained a peak parallelisation factor of 300 on Intel Xeon Phi and 11 on Intel Xeon. With only SIMD enabled, ZSIM achieved a maximum parallelistion gain of 10 on Intel Xeon Phi and 4 on Intel Xeon. Furthermore, it was shown that this software architecture simulator running on a SIMD machine is much faster than, and can handle much bigger circuits than a widely used commercial simulator (Xilinx) running on a workstation. The performance achieved by ZSIM was also compared with similar pre-existing work on logic simulation targeting GPUs and supercomputers. It was shown that ZSIM simulator running on a Xeon Phi machine gives comparable simulation performance to the IBM Blue Gene supercomputer at very much lower cost. The experimental results have shown that the Xeon Phi is competitive with simulation on GPUs and allows the handling of much larger circuits than have been reported for GPU simulation. When targeting Xeon Phi architecture, the automatic cache management of the Xeon Phi, handles and manages the on-chip local store without any explicit mention of the local store being made in the architecture of the simulator itself. However, targeting GPUs, explicit cache management in program increases the complexity of the software architecture. Furthermore, one of the strongest points of the ZSIM simulator is its portability. Note that the same code was tested on both AMD and Xeon Phi machines. The same architecture that efficiently performs on Xeon Phi, was ported into a 64 core NUMA AMD Opteron. To conclude, the two main achievements are restated as following: The primary achievement of this work was proving that the ZSIM architecture was faster than previously published logic simulators on low cost platforms. The secondary achievement was the development of a synthetic testing suite that went beyond the scale range that was previously publicly available, based on prior work that showed the synthesis technique is valid.
Resumo:
The morphometric relations allow describing dimensions of trees without prior knowledge of the age, it help the forest planning and implementation of silvicultural treatments, especially when needs to make sustainable use of forests. For this purpose, the aim of this study was to model and comparising the morphometric relations araucaria trees in social position dominant, codominant and dominated in native forest remnant, located in Lages, SC. A total of 294 trees distributed in dbh classes were intentionally selected inside of forest. In each tree was measured dbh, total height, bole height, crown diameter by eight radius, as well as the classification of social position. Simple and multiple linear regression models were used to describe the relation h/d, the proportion of the crown and formal crown in function of diameter at breast height with simple transformation, quadratic, cubic, inverse and logarithmic form. The analysis of covariance with dummy variables were used to describe the social position and tested the parallelism and slope of regression indicating need or not of the use independent regressions. The results indicated that even with great variability in the shape and size of the crown due to growth and competition process, the morphometric relations of araucaria can be accurately estimated by regression models. The relation h/d, proportion of the crown and formal crown can be described by individual model for social position dominant, codominant and dominant, or alternatively a single model with the use of dummy variables that differentiate trees group dominated for the relation h/d and formal crown. The proportion of crown presented difference in dimensions of the trees, being necessary to use dummy variable for each social stratus or use the individual models.