981 resultados para PRESSURE-VISCOSITY COEFFICIENT
Resumo:
Through the analysis of a set of numerical simulations of major mergers between initially non-rotating, pressure-supported progenitor galaxies with a range of central mass concentrations, we have shown that: (1) it is possible to generate elliptical-like galaxies, with outside one effective radius, as a result of the conversion of orbital- into internal-angular momentum; (2) the outer regions acquire part of the angular momentum first; (3) both the baryonic and the dark matter components of the remnant galaxy acquire part of the angular momentum, the relative fractions depending on the initial concentration of the merging galaxies. For this conversion to occur the initial baryonic component must be sufficiently dense and/or the encounter should take place on an orbit with high angular momentum. Systems with these hybrid properties have recently been observed through a combination of stellar absorption lines and planetary nebulae for kinematic studies of early-type galaxies. Our results are in qualitative agreement with these observations and demonstrate that even mergers composed of non rotating, pressure-supported progenitor galaxies can produce early-type galaxies with significant rotation at large radii.
Resumo:
An investigation of the problem of controlled doping of amorphous chalcogenide semiconductors utilizing a Bridgman anvil high pressure technique, has been undertaken. Bulk amorphous semiconducting materials (GeSe3.5)100-x doped with M = Bi (x = 2, 4, 10) and M = Sb (x = 10) respectively are studied up to a pressure of 100 kbar down to liquid nitrogen temperature, with a view to observe the impurity induced modifications. Measurement of the electrical conductivity of the doped samples under quasi-hydrostatic pressure reveals that the pressure induced effects in lightly doped (2 at % Bi) and heavily doped (x = 4, 10) semiconductors are markedly different. The pressure effects in Sb-doped semiconductors are quite different from those in Bi-doped material.
Resumo:
On-going, high-profile public debate about climate change has focussed attention on how to monitor the soil organic carbon stock (C(s)) of rangelands (savannas). Unfortunately, optimal sampling of the rangelands for baseline C(s) - the critical first step towards efficient monitoring - has received relatively little attention to date. Moreover, in the rangelands of tropical Australia relatively little is known about how C(s) is influenced by the practice of cattle grazing. To address these issues we used linear mixed models to: (i) unravel how grazing pressure (over a 12-year period) and soil type have affected C(s) and the stable carbon isotope ratio of soil organic carbon (delta(13)C) (a measure of the relative contributions of C(3) and C(4) vegetation to C(s)); (ii) examine the spatial covariation of C(s) and delta(13)C; and, (iii) explore the amount of soil sampling required to adequately determine baseline C(s). Modelling was done in the context of the material coordinate system for the soil profile, therefore the depths reported, while conventional, are only nominal. Linear mixed models revealed that soil type and grazing pressure interacted to influence C(s) to a depth of 0.3 m in the profile. At a depth of 0.5 m there was no effect of grazing on C(s), but the soil type effect on C(s) was significant. Soil type influenced delta(13)C to a soil depth of 0.5 m but there was no effect of grazing at any depth examined. The linear mixed model also revealed the strong negative correlation of C(s) with delta(13)C, particularly to a depth of 0.1 m in the soil profile. This suggested that increased C(s) at the study site was associated with increased input of C from C(3) trees and shrubs relative to the C(4) perennial grasses; as the latter form the bulk of the cattle diet, we contend that C sequestration may be negatively correlated with forage production. Our baseline C(s) sampling recommendation for cattle-grazing properties of the tropical rangelands of Australia is to: (i) divide the property into units of apparently uniform soil type and grazing management; (ii) use stratified simple random sampling to spread at least 25 soil sampling locations about each unit, with at least two samples collected per stratum. This will be adequate to accurately estimate baseline mean C(s) to within 20% of the true mean, to a nominal depth of 0.3 m in the profile.
Resumo:
Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.
Resumo:
Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.
Resumo:
Abstract It is widely considered that high pressure processing (HPP) results in better retention of micronutrients and phytochemicals compared to thermal pasteurization (TP), although some studies indicate that this may not be true in all cases. The aims of this study were (1) to objectively compare the effects of HPP under commercial processing conditions with thermal pasteurization (TP) on the stability of phenolic antioxidants in strawberries following processing and during storage and (2) to evaluate the influence of varietal differences and hence differences in biochemical composition of strawberries on the stability of phenolic antioxidants. Strawberry puree samples from cultivars Camarosa, Rubygem, and Festival were subjected to HPP (600 MPa/20 °C/5 min) and TP (88 °C/2 min). The activities of oxidative enzymes were evaluated before and after processing. Furthermore, the antioxidant capacity (total phenolic content (TPC), oxygen radical absorbance capacity (ORAC), and ferric reducing antioxidant power (FRAP)) and individual anthocyanins (by HPLC) were determined prior to and following processing and after three months of refrigerated storage (4 °C). Depending on the cultivar, HPP caused 15–38% and 20–33% inactivation of polyphenol oxidase and peroxidase, respectively, compared to almost complete inactivation of these enzymes by TP. Significant decreases (p < 0.05) in ORAC, FRAP, TPC and anthocyanin contents were observed during processing and storage of both HPP and TP samples. Anthocyanins were the most affected with only 19–25% retention after three months of refrigerated storage (4 °C). Slightly higher (p < 0.05) loss of TPC and antioxidant capacity were observed during storage of HPP samples compared to TP. Industrial Relevance: The results of the study demonstrated that both high pressure processing and thermal pasteurization result in high retention of phenolic phytochemicals in strawberry products. Under the conditions investigated, high pressure processing did not result in a better retention of phenolic phytochemicals compared to thermal pasteurization. In fact, a slightly higher loss of total polyphenol content and antioxidant capacity were observed during refrigerated storage of HPP processed samples. Our results showed that, high pressure processing may not always be a better alternative to thermal processing for strawberry puree processing if the main objective is better retention of phenolic antioxidants. However, it should be noted that other quality attributes such as sensory properties, where distinct advantages of HPP are expected, were outside the scope of this study.
Resumo:
A formulation in terms of a Fredholm integral equation of the first kind is given for the axisymmetric problem of a disk oscillating harmonically in a viscous fluid whose surface is contaminated with a surfactant film. The equation of the first kind is converted to a pair of coupled integral equations of the second kind, which are solved numerically. The resistive torque on the disk is evaluated and surface velocity profiles are computed for varying values of the ratio of the coefficient of surface shear viscosity to the coefficient of viscosity of the substrate fluid, and the depth of the disk below the surface.
Resumo:
The effect of pressure on the electrical resistivity of bulk Si20Te80 glass has been studied up to a pressure of 8 GPa. A discontinuous transition occurs at a pressure of 7 GPa. The X-ray diffraction studies on the pressure quenched sample show that the high pressure phase is crystalline with hexagonal structure (c/a = 1.5). On heating, the high pressure hexagonal phase has on exothermic decomposition atT = 586 K into two crystalline phases, which are the stable phases tellurium and SiTe2 obtained by simple heating of the glass.
Resumo:
The current voltage characteristics ofo-tolidine-iodine, with stoichiometry 1:1 grown from benzene, have been studied under high pressures upto 6 GPa atT=300 K andT=77 K. The characteristics show a pronounced deviation from ohmicity beyond a certain current for all pressures studied. At room temperature, beyond a threshold field the system switches from a low conductingOFF state to a high conductingON state with σON/σOFF ∼ 103. TheOFF state can be restored by the application of an a.c. pulse of low frequency. The temperature dependence of the two states studied indicates that theOFF state is semiconducting while theON state, beyond a certain applied pressure is metallic. The characteristics atT=77 K do not show any switching.
Resumo:
The electrical resistivity of layerd crystalline GeSe has been investigated up to a pressure of 100 kbar and down to liquid-nitrogen temperature by use of a Bridgman anvil device. A pressure-induced first-order phase transition has been observed in single-crystal GeSe near 6 GPa. The high-pressure phase is found to be quenchable and an x-ray diffraction study of the quenched material reveals that it has the face-centered-cubic structure. Resistivity measurements as a function of pressure and temperature suggest that the high-pressure phase is metallic.
Resumo:
An irreversible pressure induced semiconductor-to-metal transition in bulk Ge20Te80 glass is observed at about 5 GPa pressure. The high pressure phase has a face centered cubic structure with a lattice constant 6.42 A° as deduced by X-ray diffraction studies on the pressure quenched samples. The temperature and pressure dependence of the electrical resistivity confirms the observed transition to be a semiconductor-to-metal transition. The temperature dependence of thermo electric power is also reported.
Resumo:
The distribution of relative velocities between colliding particles in shear flows of inelastic spheres is analysed in the Volume fraction range 0.4-0.64. Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to line joining the centres). The distribution or pre-collisional normal relative velocities (along the line Joining the centres of the particles) is Found to be an exponential distribution for particles with low normal coefficient of restitution in the range 0.6-0.7. This is in contrast to the Gaussian distribution for the normal relative velocity in all elastic fluid in the absence of shear. A composite distribution function, which consists of an exponential and a Gaussian component, is proposed to span the range of inelasticities considered here. In the case of roughd particles, the relative velocity tangential to the surfaces at contact is also evaluated, and it is found to be close to a Gaussian distribution even for highly inelastic particles.Empirical relations are formulated for the relative velocity distribution. These are used to calculate the collisional contributions to the pressure, shear stress and the energy dissipation rate in a shear flow. The results of the calculation were round to be in quantitative agreement with simulation results, even for low coefficients of restitution for which the predictions obtained using the Enskog approximation are in error by an order of magnitude. The results are also applied to the flow down an inclined plane, to predict the angle of repose and the variation of the volume fraction with angle of inclination. These results are also found to be in quantitative agreement with previous simulations.