879 resultados para Ontologies (Information Retrieval)
Resumo:
This study investigates if and why assessing relevance of clinical records for a clinical retrieval task is cognitively demanding. Previous research has highlighted the challenges and issues information retrieval systems are faced with when determining the relevance of documents in this domain, e.g., the vocabulary mismatch problem. Determining if this assessment imposes cognitive load on human assessors, and why this is the case, may shed lights on what are the (cognitive) processes that assessors use for determining document relevance (in this domain). High cognitive load may impair the ability of the user to make accurate relevance judgements and hence the design of IR mechanisms may need to take this into account in order to reduce the load.
Resumo:
In this paper we propose a method that integrates the no- tion of understandability, as a factor of document relevance, into the evaluation of information retrieval systems for con- sumer health search. We consider the gain-discount evaluation framework (RBP, nDCG, ERR) and propose two understandability-based variants (uRBP) of rank biased precision, characterised by an estimation of understandability based on document readability and by different models of how readability influences user understanding of document content. The proposed uRBP measures are empirically contrasted to RBP by comparing system rankings obtained with each measure. The findings suggest that considering understandability along with topicality in the evaluation of in- formation retrieval systems lead to different claims about systems effectiveness than considering topicality alone.
Resumo:
This article presents a study of how humans perceive and judge the relevance of documents. Humans are adept at making reasonably robust and quick decisions about what information is relevant to them, despite the ever increasing complexity and volume of their surrounding information environment. The literature on document relevance has identified various dimensions of relevance (e.g., topicality, novelty, etc.), however little is understood about how these dimensions may interact. We performed a crowdsourced study of how human subjects judge two relevance dimensions in relation to document snippets retrieved from an internet search engine. The order of the judgment was controlled. For those judgments exhibiting an order effect, a q–test was performed to determine whether the order effects can be explained by a quantum decision model based on incompatible decision perspectives. Some evidence of incompatibility was found which suggests incompatible decision perspectives is appropriate for explaining interacting dimensions of relevance in such instances.
Resumo:
The capability of storing multi-bit information is one of the most important challenges in memory technologies. An ambipolar polymer which intrinsically has the ability to transport electrons and holes as a semiconducting layer provides an opportunity for the charge trapping layer to trap both electrons and holes efficiently. Here, we achieved large memory window and distinct multilevel data storage by utilizing the phenomena of ambipolar charge trapping mechanism. As fabricated flexible memory devices display five well-defined data levels with good endurance and retention properties showing potential application in printed electronics.
Resumo:
This paper reports on the 2nd ShARe/CLEFeHealth evaluation lab which continues our evaluation resource building activities for the medical domain. In this lab we focus on patients' information needs as opposed to the more common campaign focus of the specialised information needs of physicians and other healthcare workers. The usage scenario of the lab is to ease patients and next-of-kins' ease in understanding eHealth information, in particular clinical reports. The 1st ShARe/CLEFeHealth evaluation lab was held in 2013. This lab consisted of three tasks. Task 1 focused on named entity recognition and normalization of disorders; Task 2 on normalization of acronyms/abbreviations; and Task 3 on information retrieval to address questions patients may have when reading clinical reports. This year's lab introduces a new challenge in Task 1 on visual-interactive search and exploration of eHealth data. Its aim is to help patients (or their next-of-kin) in readability issues related to their hospital discharge documents and related information search on the Internet. Task 2 then continues the information extraction work of the 2013 lab, specifically focusing on disorder attribute identification and normalization from clinical text. Finally, this year's Task 3 further extends the 2013 information retrieval task, by cleaning the 2013 document collection and introducing a new query generation method and multilingual queries. De-identified clinical reports used by the three tasks were from US intensive care and originated from the MIMIC II database. Other text documents for Tasks 1 and 3 were from the Internet and originated from the Khresmoi project. Task 2 annotations originated from the ShARe annotations. For Tasks 1 and 3, new annotations, queries, and relevance assessments were created. 50, 79, and 91 people registered their interest in Tasks 1, 2, and 3, respectively. 24 unique teams participated with 1, 10, and 14 teams in Tasks 1, 2 and 3, respectively. The teams were from Africa, Asia, Canada, Europe, and North America. The Task 1 submission, reviewed by 5 expert peers, related to the task evaluation category of Effective use of interaction and targeted the needs of both expert and novice users. The best system had an Accuracy of 0.868 in Task 2a, an F1-score of 0.576 in Task 2b, and Precision at 10 (P@10) of 0.756 in Task 3. The results demonstrate the substantial community interest and capabilities of these systems in making clinical reports easier to understand for patients. The organisers have made data and tools available for future research and development.
Resumo:
In today’s world of information-driven society, many studies are exploring usefulness and ease of use of the technology. The research into personalizing next-generation user interface is also ever increasing. A better understanding of factors that influence users’ perception of web search engine performance would contribute in achieving this. This study measures and examines how users’ perceived level of prior knowledge and experience influence their perceived level of satisfaction of using the web search engines, and how their perceived level of satisfaction affects their perceived intention to reuse the system. 50 participants from an Australian university participated in the current study, where they performed three search tasks and completed survey questionnaires. A research model was constructed to test the proposed hypotheses. Correlation and regression analyses results indicated a significant correlation between (1) users’ prior level of experience and their perceived level of satisfaction in using the web search engines, and (2) their perceived level of satisfaction in using the systems and their perceived intention to reuse the systems. A theoretical model is proposed to illustrate the causal relationships. The implications and limitations of the study are also discussed.
Resumo:
Rating systems are used by many websites, which allow customers to rate available items according to their own experience. Subsequently, reputation models are used to aggregate available ratings in order to generate reputation scores for items. A problem with current reputation models is that they provide solutions to enhance accuracy of sparse datasets not thinking of their models performance over dense datasets. In this paper, we propose a novel reputation model to generate more accurate reputation scores for items using any dataset; whether it is dense or sparse. Our proposed model is described as a weighted average method, where the weights are generated using the normal distribution. Experiments show promising results for the proposed model over state-of-the-art ones on sparse and dense datasets.
Resumo:
Many websites offer the opportunity for customers to rate items and then use customers' ratings to generate items reputation, which can be used later by other users for decision making purposes. The aggregated value of the ratings per item represents the reputation of this item. The accuracy of the reputation scores is important as it is used to rank items. Most of the aggregation methods didn't consider the frequency of distinct ratings and they didn't test how accurate their reputation scores over different datasets with different sparsity. In this work we propose a new aggregation method which can be described as a weighted average, where weights are generated using the normal distribution. The evaluation result shows that the proposed method outperforms state-of-the-art methods over different sparsity datasets.
Resumo:
Reputation systems are employed to provide users with advice on the quality of items on the Web, based on the aggregated value of user-based ratings. Recommender systems are used online to suggest items to users according to the users, expressed preferences. Yet, recommender systems will endorse an item regardless of its reputation value. In this paper, we report the incorporation of reputation models into recommender systems to enhance the accuracy of recommendations. The proposed method separates the implementation of recommender and reputation systems for generality. Our experiment showed that the proposed method could enhance the accuracy of existing recommender systems.
Resumo:
Determination of sequence similarity is a central issue in computational biology, a problem addressed primarily through BLAST, an alignment based heuristic which has underpinned much of the analysis and annotation of the genomic era. Despite their success, alignment-based approaches scale poorly with increasing data set size, and are not robust under structural sequence rearrangements. Successive waves of innovation in sequencing technologies – so-called Next Generation Sequencing (NGS) approaches – have led to an explosion in data availability, challenging existing methods and motivating novel approaches to sequence representation and similarity scoring, including adaptation of existing methods from other domains such as information retrieval. In this work, we investigate locality-sensitive hashing of sequences through binary document signatures, applying the method to a bacterial protein classification task. Here, the goal is to predict the gene family to which a given query protein belongs. Experiments carried out on a pair of small but biologically realistic datasets (the full protein repertoires of families of Chlamydia and Staphylococcus aureus genomes respectively) show that a measure of similarity obtained by locality sensitive hashing gives highly accurate results while offering a number of avenues which will lead to substantial performance improvements over BLAST..
A tag-based personalized item recommendation system using tensor modeling and topic model approaches
Resumo:
This research falls in the area of enhancing the quality of tag-based item recommendation systems. It aims to achieve this by employing a multi-dimensional user profile approach and by analyzing the semantic aspects of tags. Tag-based recommender systems have two characteristics that need to be carefully studied in order to build a reliable system. Firstly, the multi-dimensional correlation, called as tag assignment
Resumo:
A key concept in many Information Retrieval (IR) tasks, e.g. document indexing, query language modelling, aspect and diversity retrieval, is the relevance measurement of topics, i.e. to what extent an information object (e.g. a document or a query) is about the topics. This paper investigates the interference of relevance measurement of a topic caused by another topic. For example, consider that two user groups are required to judge whether a topic q is relevant to a document d, and q is presented together with another topic (referred to as a companion topic). If different companion topics are used for different groups, interestingly different relevance probabilities of q given d can be reached. In this paper, we present empirical results showing that the relevance of a topic to a document is greatly affected by the companion topic’s relevance to the same document, and the extent of the impact differs with respect to different companion topics. We further analyse the phenomenon from classical and quantum-like interference perspectives, and connect the phenomenon to nonreality and contextuality in quantum mechanics. We demonstrate that quantum like model fits in the empirical data, could be potentially used for predicting the relevance when interference exists.
Resumo:
Recommender systems provide personalized advice for customers online based on their own preferences, while reputation systems generate a community advice on the quality of items on the Web. Both systems use users’ ratings to generate their output. In this paper, we propose to combine reputation models with recommender systems to enhance the accuracy of recommendations. The main contributions include two methods for merging two ranked item lists which are generated based on recommendation scores and reputation scores, respectively, and a personalized reputation method to generate item reputations based on users’ interests. The proposed merging methods can be applicable to any recommendation methods and reputation methods, i.e., they are independent from generating recommendation scores and reputation scores. The experiments we conducted showed that the proposed methods could enhance the accuracy of existing recommender systems.
Resumo:
The use of ‘topic’ concepts has shown improved search performance, given a query, by bringing together relevant documents which use different terms to describe a higher level concept. In this paper, we propose a method for discovering and utilizing concepts in indexing and search for a domain specific document collection being utilized in industry. This approach differs from others in that we only collect focused concepts to build the concept space and that instead of turning a user’s query into a concept based query, we experiment with different techniques of combining the original query with a concept query. We apply the proposed approach to a real-world document collection and the results show that in this scenario the use of concept knowledge at index and search can improve the relevancy of results.
Resumo:
For people with cognitive disabilities, technology is more often thought of as a support mechanism, rather than a source of division that may require intervention to equalize access across the cognitive spectrum. This paper presents a first attempt at formalizing the digital gap created by the generalization of search engines. This was achieved through the development of a mapping of cognitive abilities required by users to execute low- level tasks during a standard Web search task. The mapping demonstrates how critical these abilities are to successfully use search engines with an adequate level of independence. It will lead to a set of design guidelines for search engine interfaces that will allow for the engagement of users of all abilities, and also, more importantly, in search algorithms such as query suggestion and measure of relevance (i.e. ranking).