977 resultados para Modeling complexity
Resumo:
A modeling paradigm is proposed for covariate, variance and working correlation structure selection for longitudinal data analysis. Appropriate selection of covariates is pertinent to correct variance modeling and selecting the appropriate covariates and variance function is vital to correlation structure selection. This leads to a stepwise model selection procedure that deploys a combination of different model selection criteria. Although these criteria find a common theoretical root based on approximating the Kullback-Leibler distance, they are designed to address different aspects of model selection and have different merits and limitations. For example, the extended quasi-likelihood information criterion (EQIC) with a covariance penalty performs well for covariate selection even when the working variance function is misspecified, but EQIC contains little information on correlation structures. The proposed model selection strategies are outlined and a Monte Carlo assessment of their finite sample properties is reported. Two longitudinal studies are used for illustration.
Resumo:
We address the issue of complexity for vector quantization (VQ) of wide-band speech LSF (line spectrum frequency) parameters. The recently proposed switched split VQ (SSVQ) method provides better rate-distortion (R/D) performance than the traditional split VQ (SVQ) method, even at the requirement of lower computational complexity. but at the expense of much higher memory. We develop the two stage SVQ (TsSVQ) method, by which we gain both the memory and computational advantages and still retain good R/D performance. The proposed TsSVQ method uses a full dimensional quantizer in its first stage for exploiting all the higher dimensional coding advantages and then, uses an SVQ method for quantizing the residual vector in the second stage so as to reduce the complexity. We also develop a transform domain residual coding method in this two stage architecture such that it further reduces the computational complexity. To design an effective residual codebook in the second stage, variance normalization of Voronoi regions is carried out which leads to the design of two new methods, referred to as normalized two stage SVQ (NTsSVQ) and normalized two stage transform domain SVQ (NTsTrSVQ). These two new methods have complimentary strengths and hence, they are combined in a switched VQ mode which leads to the further improvement in R/D performance, but retaining the low complexity requirement. We evaluate the performances of new methods for wide-band speech LSF parameter quantization and show their advantages over established SVQ and SSVQ methods.
Resumo:
A desalination system is a complex multi energy domain system comprising power/energy flow across several domains such as electrical, thermal, and hydraulic. The dynamic modeling of a desalination system that comprehensively addresses all these multi energy domains is not adequately addressed in the literature. This paper proposes to address the issue of modeling the various energy domains for the case of a single stage flash evaporation desalination system. This paper presents a detailed bond graph modeling of a desalination unit with seamless integration of the power flow across electrical, thermal, and hydraulic domains. The paper further proposes a performance index function that leads to the tracking of the optimal chamber pressure giving the optimal flow rate for a given unit of energy expended. The model has been validated in steady state conditions by simulation and experimentation.
Resumo:
In this dissertation, I present an overall methodological framework for studying linguistic alternations, focusing specifically on lexical variation in denoting a single meaning, that is, synonymy. As the practical example, I employ the synonymous set of the four most common Finnish verbs denoting THINK, namely ajatella, miettiä, pohtia and harkita ‘think, reflect, ponder, consider’. As a continuation to previous work, I describe in considerable detail the extension of statistical methods from dichotomous linguistic settings (e.g., Gries 2003; Bresnan et al. 2007) to polytomous ones, that is, concerning more than two possible alternative outcomes. The applied statistical methods are arranged into a succession of stages with increasing complexity, proceeding from univariate via bivariate to multivariate techniques in the end. As the central multivariate method, I argue for the use of polytomous logistic regression and demonstrate its practical implementation to the studied phenomenon, thus extending the work by Bresnan et al. (2007), who applied simple (binary) logistic regression to a dichotomous structural alternation in English. The results of the various statistical analyses confirm that a wide range of contextual features across different categories are indeed associated with the use and selection of the selected think lexemes; however, a substantial part of these features are not exemplified in current Finnish lexicographical descriptions. The multivariate analysis results indicate that the semantic classifications of syntactic argument types are on the average the most distinctive feature category, followed by overall semantic characterizations of the verb chains, and then syntactic argument types alone, with morphological features pertaining to the verb chain and extra-linguistic features relegated to the last position. In terms of overall performance of the multivariate analysis and modeling, the prediction accuracy seems to reach a ceiling at a Recall rate of roughly two-thirds of the sentences in the research corpus. The analysis of these results suggests a limit to what can be explained and determined within the immediate sentential context and applying the conventional descriptive and analytical apparatus based on currently available linguistic theories and models. The results also support Bresnan’s (2007) and others’ (e.g., Bod et al. 2003) probabilistic view of the relationship between linguistic usage and the underlying linguistic system, in which only a minority of linguistic choices are categorical, given the known context – represented as a feature cluster – that can be analytically grasped and identified. Instead, most contexts exhibit degrees of variation as to their outcomes, resulting in proportionate choices over longer stretches of usage in texts or speech.
Resumo:
The precise timing of individual signals in response to those of signaling neighbors is seen in many animal species. Synchrony is the most striking of the resultant timing patterns. One of the best examples of acoustic synchrony is in katydid choruses where males produce chirps with a high degree of temporal overlap. Cooperative hypotheses that speculate on the evolutionary origins of acousti synchrony include the preservation of the species-specific call pattern, reduced predation risks, and increased call intensity. An alternative suggestion is that synchrony evolved as an epiphenomenon of competition between males in response to a female preference for chirps that lead other chirps. Previous models investigating the evolutionary origins of synchrony focused only on intrasexual competitive interactions. We investigated both competitive and cooperative hypotheses for the evolution of synchrony in the katydid Mecopoda ``Chirper'' using physiologically and ecologically realistic simulation models incorporating the natural variation in call features, ecology, female preferences, and spacing patterns, specifically aggregation. We found that although a female preference for leading chirps enables synchronous males to have some selective advantage, it is the female preference for the increased intensity of aggregations of synchronous males that enables synchrony to evolve as an evolutionarily stable strategy.
Resumo:
A new method of modeling material behavior which accounts for the dynamic metallurgical processes occurring during hot deformation is presented. The approach in this method is to consider the workpiece as a dissipator of power in the total processing system and to evaluate the dissipated power co-contentJ = ∫o σ ε ⋅dσ from the constitutive equation relating the strain rate (ε) to the flow stress (σ). The optimum processing conditions of temperature and strain rate are those corresponding to the maximum or peak inJ. It is shown thatJ is related to the strain-rate sensitivity (m) of the material and reaches a maximum value(J max) whenm = 1. The efficiency of the power dissipation(J/J max) through metallurgical processes is shown to be an index of the dynamic behavior of the material and is useful in obtaining a unique combination of temperature and strain rate for processing and also in delineating the regions of internal fracture. In this method of modeling, noa priori knowledge or evaluation of the atomistic mechanisms is required, and the method is effective even when more than one dissipation process occurs, which is particularly advantageous in the hot processing of commercial alloys having complex microstructures. This method has been applied to modeling of the behavior of Ti-6242 during hot forging. The behavior of α+ β andβ preform microstructures has been exam-ined, and the results show that the optimum condition for hot forging of these preforms is obtained at 927 °C (1200 K) and a strain rate of 1CT•3 s•1. Variations in the efficiency of dissipation with temperature and strain rate are correlated with the dynamic microstructural changes occurring in the material.
Resumo:
Les histoires de l’art et du design ont délaissé, au cours desquatre dernières décennies, l’étude canonique des objets, des artistes/concepteurs et des styles et se sont tournées vers des recherches plus interdisciplinaires. Nous soutenons néanmoins que les historiens et historiennes du design doivent continuer de pousser leur utilisation d’approches puisant dans la culturelle matérielle et la criticalité afin de combler des lacunes dans l’histoire du design et de développer des méthodes et des approches pertinentes pour son étude. Puisant dans notre expérience d’enseignement auprès de la génération des « milléniaux », qui sont portés vers un « design militant », nous offrons des exemples pédagogiques qui ont aidé nos étudiants et étudiantes à assimiler des histoires du design responsables, engagées et réflexives et à comprendre la complexité et la criticalité du design.
Resumo:
Quantitative information regarding nitrogen (N) accumulation and its distribution to leaves, stems and grains under varying environmental and growth conditions are limited for chickpea (Cicer arietinum L.). The information is required for the development of crop growth models and also for assessment of the contribution of chickpea to N balances in cropping systems. Accordingly, these processes were quantified in chickpea under different environmental and growth conditions (still without water or N deficit) using four field experiments and 1325 N measurements. N concentration ([N]) in green leaves was 50 mg g-1 up to beginning of seed growth, and then it declined linearly to 30 mg g-1 at the end of seed growth phase. [N] in senesced leaves was 12 mg g-1. Stem [N] decreased from 30 mg g-1 early in the season to 8 mg g-1 in senesced stems at maturity. Pod [N] was constant (35 mg g-1), but grain [N] decreased from 60 mg g-1 early in seed growth to 43 mg g-1 at maturity. Total N accumulation ranged between 9 and 30 g m-2. N accumulation was closely linked to biomass accumulation until maturity. N accumulation efficiency (N accumulation relative to biomass accumulation) was 0.033 g g-1 where total biomass was -2 and during early growth period, but it decreased to 0.0176 g g-1 during the later growth period when total biomass was >218 g m-2. During vegetative growth (up to first-pod), 58% of N was partitioned to leaves and 42% to stems. Depending on growth conditions, 37-72% of leaf N and 12-56% of stem N was remobilized to the grains. The parameter estimates and functions obtained in this study can be used in chickpea simulation models to simulate N accumulation and distribution.
Resumo:
The research in software science has so far been concentrated on three measures of program complexity: (a) software effort; (b) cyclomatic complexity; and (c) program knots. In this paper we propose a measure of the logical complexity of programs in terms of the variable dependency of sequence of computations, inductive effort in writing loops and complexity of data structures. The proposed complexity mensure is described with the aid of a graph which exhibits diagrammatically the dependence of a computation at a node upon the computation of other (earlier) nodes. Complexity measures of several example programs have been computed and the related issues have been discussed. The paper also describes the role played by data structures in deciding the program complexity.
Resumo:
A new approach is proposed to solve for the growth as well as the movement of hydrogen bubbles during solidification in aluminum castings. A level-set methodology has been adopted to handle this multiphase phenomenon. A microscale domain is considered and the growth and movement of hydrogen bubbles in this domain has been studied. The growth characteristics of hydrogen bubbles have been evaluated under free growth conditions in a melt having a hydrogen input caused b solidification occurring around the microdomain.
Resumo:
A constitutive modeling approach for shape memory alloy (SMA) wire by taking into account the microstructural phase inhomogeneity and the associated solid-solid phase transformation kinetics is reported in this paper. The approach is applicable to general thermomechanical loading. Characterization of various scales in the non-local rate sensitive kinetics is the main focus of this paper. Design of SMA materials and actuators not only involve an optimal exploitation of the hysteresis loops during loading-unloading, but also accounts for fatigue and training cycle identifications. For a successful design of SMA integrated actuator systems, it is essential to include the microstructural inhomogeneity effects and the loading rate dependence of the martensitic evolution, since these factors play predominant role in fatigue. In the proposed formulation, the evolution of new phase is assumed according to Weibull distribution. Fourier transformation and finite difference methods are applied to arrive at the analytical form of two important scaling parameters. The ratio of these scaling parameters is of the order of 10(6) for stress-free temperature-induced transformation and 10(4) for stress-induced transformation. These scaling parameters are used in order to study the effect of microstructural variation on the thermo-mechanical force and interface driving force. It is observed that the interface driving force is significant during the evolution. Increase in the slopes of the transformation start and end regions in the stress-strain hysteresis loop is observed for mechanical loading with higher rates.
Resumo:
How toddlers with special needs adjust to the daycare setting A multiple case study of how the relationships with adults and children are built The aim in this study is to describe how toddlers with special needs adjust to daycare. The emotional well-being and involvement in daycare activities of toddlers are especially investigated in this study. The relationship and how it is built between an adult and a child, a child and a child is examined. The daycare is examined through the socio-cultural theory as a pedagogical institution, where the child adapts by participating in social and cultural activities with the others. The development of the child is the result of the experiences that are gained through the constant relationship between the child, the family and social context. By the attachment theory the inner self-regulation, that allows the child safely adapt to new situations, develops most in the relationship between the child under 3years of age and the attending adult. The relationships between toddlers in daycare are usually built by the coincidental encounters in play and daily activities. In these relationships, the toddler gets the information of themselves and the other children. The complexity of the rules in the setting that organize the social action is challenging for the children and they need constant support from the adults. The participants of the study were five toddlers with special needs. When applying to daycare they were less than three years old and they got the specialist statement for their special needs, and the reference for daycare. The children were observed by recording their attending in the daycare once in the 3-4 months from the first day in daycare. Approximately 15 hours of material that was analysed with the Transana-program. The qualitative material was analysed by first collecting a descriptive model that explains and theorises the phenomenon. By the summery of the narrative it is placed a hypothesis that is tested by quantitative methods using correlations and variance analyses and general linear modeling that is used to count the differences between repeated measures and connections between different variables. The results of the study are built theoretically for the consistent conception between the theory and the findings in research. The toddlers in the study were all dependent on the support given by the adults in all the situations in the daycare. They could not associate with the other children without the support of the adults and their involvement in activities was low. The engagement of an adult in interaction was necessary for the children’s involvement in activities, and the co-operation with the other children. The engagement of teachers was statistically significantly higher than the engagement of other professions.
Resumo:
With the rapid development of various technologies and applications in smart grid implementation, demand response has attracted growing research interests because of its potentials in enhancing power grid reliability with reduced system operation costs. This paper presents a new demand response model with elastic economic dispatch in a locational marginal pricing market. It models system economic dispatch as a feedback control process, and introduces a flexible and adjustable load cost as a controlled signal to adjust demand response. Compared with the conventional “one time use” static load dispatch model, this dynamic feedback demand response model may adjust the load to a desired level in a finite number of time steps and a proof of convergence is provided. In addition, Monte Carlo simulation and boundary calculation using interval mathematics are applied for describing uncertainty of end-user's response to an independent system operator's expected dispatch. A numerical analysis based on the modified Pennsylvania-Jersey-Maryland power pool five-bus system is introduced for simulation and the results verify the effectiveness of the proposed model. System operators may use the proposed model to obtain insights in demand response processes for their decision-making regarding system load levels and operation conditions.
Resumo:
Online dynamic load modeling has become possible with the availability of Static Voltage Compensator (SVC) and Phasor Measurement Unit (PMU) devices. The power of the load response to the small random bounded voltage fluctuations caused from SVC can be measured by PMU for modelling purposes. The aim of this paper is to illustrate the capability of identifying an aggregated load model from high voltage substation level in the online environment. The induction motor is used as the main test subject since it contributes the majority of the dynamic loads. A test system representing simple electromechanical generator model serving dynamic loads through the transmission network is used to verify the proposed method. Also, dynamic load with multiple induction motors are modeled to achieve a better realistic load representation.
Resumo:
This paper review the some of the recent developments in Complexity theory as applied to telephone-switching. Some of these techniques are suitable for practical implementation in India.