971 resultados para MOIETY
Resumo:
The cell wall peptidoglycan (PG) of Burkholderia cenocepacia, an opportunistic pathogen, has not yet been characterized. However, the B. cenocepacia genome contains homologs of genes encoding PG biosynthetic functions in other bacteria. PG biosynthesis involves the formation of the undecaprenyl-pyrophosphate-linked N-acetyl glucosamine-N-acetyl muramic acid-pentapeptide, known as lipid II, which is built on the cytosolic face of the cell membrane. Lipid II is then translocated across the membrane and its glycopeptide moiety becomes incorporated into the growing cell wall mesh; this translocation step is critical to PG synthesis. We have investigated candidate flippase homologs of the MurJ family in B. cenocepacia. Our results show that BCAL2764, herein referred to as murJBc, is indispensable for viability. Viable B. cenocepacia could only be obtained through a conditional mutagenesis strategy by placing murJBc under the control of a rhamnose-inducible promoter. Under rhamnose depletion, the conditional strain stopped growing and individual cells displayed morphological abnormalities consistent with a defect in PG synthesis. Bacterial cells unable to express MurJBc underwent cell lysis, while partial MurJBc depletion sensitized the mutant to the action of β-lactam antibiotics. Depletion of MurJBc caused accumulation of PG precursors consistent with the notion that this protein plays a role in lipid II flipping to the periplasmic compartment. Reciprocal complementation experiments of conditional murJ mutants in B. cenocepacia and Escherichia coli with plasmids expressing MurJ from each strain indicated that MurJBc and MurJEc are functional homologs. Together, our results are consistent with the notion that MurJBc is a PG lipid II flippase in B. cenocepacia.
Resumo:
Accessing chirally pure cis-diols from arenes using micro-organisms over-expressing toluene dioxygenase (TDO) is now well established, but the conversions remain low for the more toxic and volatile substrates. For such arenes, improved production has already been achieved in the presence of hydrophobic non-toxic ionic liquids (ILs) acting in the form of a reservoir for the arene substrate. Yet, the costs associated with such ILs require extensive process development to render them viable. Herein, we show that optimization of the hydrophobic IL's cationic moiety and of the IL's concentration are key to enhanced conversion yielding between a 2-5 fold yield increase in the conversion of four haloarenes (Ph-X; X = F, Cl, Br, I). Additionally, we report that hydrophilic imidazolium-based ILs offer opportunities to achieve similarly high yielding biotransformations, with further improved reaction rates (<6 h), and this at very low ILs' concentrations (0.0015 VIL/Vaq). We also demonstrate that the increased biotransformations are due to these ILs being inhibitors of cellular respiration processes and thus favoring the shunting of NADH and O2 towards the overexpressed biocatalytic process. © 2014 the Partner Organisations.
Resumo:
The tandem ene/intramolecular Sakurai cyclisation (IMSC) reaction has been successfully applied to thesynthesis of a range of C-glycosides, with key intermediates offering opportunities for functionalisation ofthe glycon moiety. To demonstrate the versatility of the approach to access the 2-deoxy-C-glycoside series,we synthesised diastereomerically pure C-glucoside and galactoside derivatives incorporating functionalisedaromatic, heteroaromatic and bicyclic aromatic moieties, in addition to the C-homologue of(±)-b-2-deoxy-glucose 6-phosphate.
Resumo:
Zearalenone (ZEN) is a mycotoxin produced by Fusarium fungi. Once ingested, ZEN may be absorbed andmetabolised to a- and b-zearalenol (a-ZOL, b-ZOL), and to a lesser extent a- and b-zearalanol (a-ZAL,b-ZAL). Further biotransformation to glucuronide conjugates also occurs to facilitate the elimination ofthese toxins from the body. Unlike ZEN and its metabolites, information regarding the estrogenic activityof these glucuronide conjugates in various tissues is lacking. ZEN-14-O-glucuronide, a-ZOL-14-O-glucuronide,a-ZOL-7-O-glucuronide, b-ZOL-14-O-glucuronide and b-ZOL-16-O-glucuronide, previouslyobtained as the major products from preparative enzymatic synthesis, were investigated for their potentialto cause endocrine disruption through interference with estrogen receptor transcriptional activity.All five glucuronide conjugates showed a very weak agonist response in an estrogen responsive reportergene assay (RGA), with activity ranging from 0.0001% to 0.01% of that of 17b-estradiol, and also lessthan that of ZEN, a-ZOL and b-ZOL which have previously shown estrogenic potencies of the order 17bestradiol> a-ZOL > ZEN > b-ZOL. Confirmatory mass spectrometry revealed that any activity observedwas likely a result of minor deconjugation of the glucuronide moiety. This study confirms that formationof ZEN and ZOL glucuronides is a detoxification reaction with regard to estrogenicity, serving as a potentialhost defence mechanism against ZEN-induced estrogenic activity.
Resumo:
Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins.
Resumo:
Microcystins (cyclic heptapeptides) are produced by a number of freshwater cyanobacteria and cause concern in potable water supplies due to their acute and chronic toxicity. The present study reports the structural characterization of the degradation products of the photocatalytic oxidation of microcystin-LR, so aiding the mechanistic understanding of this process. TiO2 photocatalysis is a promising technology for removal of these toxins from drinking water. However, before it can be adopted in any practical application it is necessary to have a sufficient knowledge of degradation byproducts and their potential toxicity. Liquid chromatography-mass spectrometry analysis demonstrated that the major destruction pathway of microcystin appears to be initiated via three mechanisms: UV irradiation, hydroxyl radical attack, and oxidation. UV irradiation caused geometrical isomerization of microcystin converting the (4E), (6E) of the Adda configuration to (4E), 6(Z) or 4(Z), 6(E). Hydroxyl radical attack on the conjugated diene structure of Adda moiety produced dihyroxylated products. Further oxidation cleaved the hydroxylated 4-5 and/or 6-7 bond of Adda to form aldehyde or ketone peptide residues, which then were oxidized into the corresponding carboxylic acids. Photocatalysis also hydrolyzed the peptide bond on the ring structure of microcystin to form linear structures although this appeared to be a minor pathway.
Resumo:
TiO2 photocatalysis has been used to destroy microcystin-LR in aqueous solution. The destruction of this toxin was monitored by HPLC, and the disappearance was accompanied by the appearance of seven UV detectable compounds. Spectral analysis revealed that some of these compounds retained spectra similar to the parent compound suggesting that the Adda moiety, thought to be responsible for the characteristic spectrum, remained intact whereas the spectra of some of the other products was more radically altered. Six of the seven observed reaction products did not appear to undergo further degradation during prolonged photocatalysis (100 min). The degree to which microcystin-LR was mineralized by photocatalytic oxidation was determined. Results indicated that less than 10% mineralization occurred. Mass spectral analysis of the photocatalyzed microcystin-LR allowed tentative characterization of the reaction process and products. Reduction in toxicity due to the photocatalytic oxidation was evaluated using an invertebrate bioassay, which demonstrated that the disappearance of microcystin-LR was paralleled by a reduction in toxicity. These findings suggest that photocatalytic destruction of microcystins may be a suitable method for the removal of these potentially hazardous compounds from drinking water.
Resumo:
Density functional theory with gradient corrections and spin polarization has been used to study the dehydrogenation of CH3 on Ni(111), a crucial step in many important catalytic reactions. The reaction, CH3(ads)--> CH2(ads)+H-(ads), is about 0.5 eV endothermic with an activation energy of more than 1 eV. The overall reaction pathway is rather intriguing. The C moiety translates from a hcp to a fcc site during the course of the reaction. The transition state of the reaction has been identified. The CH3 species is highly distorted, and both C and the active H are centered nearly on top of a row of Ni atoms with a long C-H bond length of 1.80 Angstrom. The local density of states coupled with examination of the real space distribution of individual quantum states has been used to analyze the reaction pathway. (C) 2000 American Institute of Physics. [S0021-9606(00)30218-5].
Resumo:
We recently demonstrated that incorporation of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipid A moiety of lipopolysaccharide (LPS) is required for transport of LPS to the outer membrane and viability of the Gram-negative bacterium Burkholderia cenocepacia. ArnT is a membrane protein catalyzing the transfer of l-Ara4N to the LPS molecule at the periplasmic face of the inner membrane, but its topology and mechanism of action are not well characterized. Here, we elucidate the topology of ArnT and identify key amino acids that likely contribute to its enzymatic function. PEGylation assays using a cysteineless version of ArnT support a model of 13 transmembrane helices and a large C-terminal region exposed to the periplasm. The same topological configuration is proposed for the Salmonella enterica serovar Typhimurium ArnT. Four highly conserved periplasmic residues in B. cenocepacia ArnT, tyrosine-43, lysine-69, arginine-254 and glutamic acid-493, were required for activity. Tyrosine-43 and lysine-69 span two highly conserved motifs, 42RYA44 and 66YFEKP70, that are found in ArnT homologues from other species. The same residues in S. enterica ArnT are also needed for function. We propose these aromatic and charged amino acids participate in either undecaprenyl phosphate-l-Ara4N substrate recognition or transfer of l-Ara4N to the LPS.
Resumo:
SIGNIFICANCE: Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year.
RECENT ADVANCES: The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell.
CRITICAL ISSUES: CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics.
FUTURE DIRECTIONS: In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.
Resumo:
Lung infection by Burkholderia species, in particular B. cenocepacia, accelerates tissue damage and increase post-lung transplant mortality in cystic fibrosis patients. Host- microbes interplay largely depends on interactions between pathogen specific molecules and innate immune receptors such as the Toll-like receptor 4 (TLR4), which recognizes the lipid A moiety of the bacterial lipopolysaccharide (LPS). The human TLR4/MD-2 LPS receptor complex is strongly activated by hexa-acylated lipid A and poorly activated by underacylated lipid A. Here, we report that B. cenocepacia LPS strongly activates human TLR4/MD-2 despite its lipid A having only five acyl chains. Further, we show that aminoarabinose residues in lipid A contribute to TLR4-lipid A interactions, and experiments in a mouse model of LPS-induced endotoxic shock confirmed the pro- inflammatory potential of B. cenocepacia penta-acylated lipid A. Molecular modeling, combined with mutagenesis of TLR4-MD2 interactive surfaces, suggests that longer acyl chains and the aminoarabinose residues in the B. cenocepacia lipid A allow exposure of the fifth acyl chain on the surface of MD-2 enabling interactions with TLR4 and its dimerization. Our results provide a molecular model for activation of the human TLR4/MD- 2 complex by penta-acylated lipid A, explaining the ability of hypoacylated B. cenocepacia LPS to promote pro- inflammatory responses associated to the severe pathogenicity of this opportunistic bacterium.
Resumo:
In this study, we report a novel heptadecapeptide (LIGGCWTKSIPPKPCLV) of the pLR/ranacyclin family, named pLR-HL, whose structure was deduced from its biosynthetic precursor-encoding cDNA cloned from the skin secretion-derived cDNA library of the broad-folded frog, Hylarana latouchii, by employing a "shotgun" cloning technique. It contains a disulphide loop between Cys5 and Cys15 which is consistent with Bowman-Birk-type protease inhibitors. The primary structure of pLR-HL deduced from the cDNA sequence was confirmed by fractionating the skin secretion using reverse phase HPLC and subsequent analysis using MALDI-TOF mass spectrometry and LC/MS/MS fragmentation sequencing. On the basis of the establishment of unequivocal amino acid sequence, a synthetic replicate was synthesised by solid-phase Fmoc chemistry, and it displayed a moderately potent trypsin inhibition with a Ki of 143 nM. The substitution of Lys-8 by Phe (Phe8 -pLR-HL) resulted in abolition of trypsin inhibition but generation of modest inhibition on chymotrypsin with a Ki of 2.141 μM. Additionally, both the disulphide loops of pLR-HL and Phe8 -pLR-HL were synthesised and tested. Both of the catalytic loops retained similar inhibitory potencies towards trypsin or chymotrypsin in comparison with the original intact molecules. Thus, the replacement of reactive site residues could alter the specificity of these protease inhibitors, while the canonical reactive loop alone can independently constitute biologically-active moiety.
Resumo:
A highly luminescent and sensitive terbium complex of a ligand comprising of a phthalimide group appended to a DO3A moiety is an active pH sensor that is conditional on its previous pH. © 2012 The Royal Society of Chemistry.
Resumo:
ArnT is a glycosyltransferase that catalyses the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipid A moiety of the lipopolysaccharide. This is a critical modification enabling bacteria to resist killing by antimicrobial peptides. ArnT is an integral inner membrane protein consisting of 13 predicted transmembrane helices and a large periplasmic C-terminal domain. We report here the identification of a functional motif with a canonical consensus sequence DEXRYAX(5)MX(3)GXWX(9)YFEKPX(4)W spanning the first periplasmic loop, which is highly conserved in all ArnT proteins examined. Site-directed mutagenesis demonstrated the contribution of this motif in ArnT function, suggesting that these proteins have a common mechanism. We also demonstrate that the Burkholderia cenocepacia and Salmonella enterica serovar Typhimurium ArnT C-terminal domain is required for polymyxin B resistance in vivo. Deletion of the C-terminal domain in B. cenocepacia ArnT resulted in a protein with significantly reduced in vitro binding to a lipid A fluorescent substrate and unable to catalyse lipid A modification with L-Ara4N. An in silico predicted structural model of ArnT strongly resembled the tertiary structure of Campylobacter lari PglB, a bacterial oligosaccharyltransferase involved in protein N-glycosylation. Therefore, distantly related oligosaccharyltransferases from ArnT and PglB families operating on lipid and polypeptide substrates, respectively, share unexpected structural similarity that could not be predicted from direct amino acid sequence comparisons. We propose that lipid A and protein glycosylation enzymes share a conserved catalytic mechanism despite their evolutionary divergence.
Resumo:
We report the first complete structural characterization of the lipopolysaccharide (LPS) from a cystic fibrosis (CF) clinical isolate of Prevotella denticola (B003V1S1X). Chemical, spectroscopic, and spectrometric analyses revealed a unique rough-type LPS (LOS) structure. The structure has a highly negatively charged heptasaccharide core region containing hexoses, with the first two sugars, 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and mannose, highly phosphorylated. Furthermore, the lipid A moiety has the typical structure for the genus Prevotella, and was also highly phosphorylated.