966 resultados para Limit-theorems
Resumo:
This paper has two main objectives. Firstly, to identify the role of the university-focused intermediaries, specifically UVCs, in order to explain how they interact at the early stage of USO creation, particularly regarding knowledge sharing. Secondly, to analyse whether they change their position once the USO is developed. This gives rise to two Research Questions: How does knowledge sharing occur in the dynamics of a university-based entrepreneurial ecosystem? And Do particular participants, such as UTTOs or UVCs, always occupy the same role and position within the university-based entrepreneurial ecosystem?
Resumo:
Recent efforts to develop large-scale neural architectures have paid relatively little attention to the use of self-organizing maps (SOMs). Part of the reason is that most conventional SOMs use a static encoding representation: Each input is typically represented by the fixed activation of a single node in the map layer. This not only carries information in an inefficient and unreliable way that impedes building robust multi-SOM neural architectures, but it is also inconsistent with rhythmic oscillations in biological neural networks. Here I develop and study an alternative encoding scheme that instead uses limit cycle attractors of multi-focal activity patterns to represent input patterns/sequences. Such a fundamental change in representation raises several questions: Can this be done effectively and reliably? If so, will map formation still occur? What properties would limit cycle SOMs exhibit? Could multiple such SOMs interact effectively? Could robust architectures based on such SOMs be built for practical applications? The principal results of examining these questions are as follows. First, conditions are established for limit cycle attractors to emerge in a SOM through self-organization when encoding both static and temporal sequence inputs. It is found that under appropriate conditions a set of learned limit cycles are stable, unique, and preserve input relationships. In spite of the continually changing activity in a limit cycle SOM, map formation continues to occur reliably. Next, associations between limit cycles in different SOMs are learned. It is shown that limit cycles in one SOM can be successfully retrieved by another SOM’s limit cycle activity. Control timings can be set quite arbitrarily during both training and activation. Importantly, the learned associations generalize to new inputs that have never been seen during training. Finally, a complete neural architecture based on multiple limit cycle SOMs is presented for robotic arm control. This architecture combines open-loop and closed-loop methods to achieve high accuracy and fast movements through smooth trajectories. The architecture is robust in that disrupting or damaging the system in a variety of ways does not completely destroy the system. I conclude that limit cycle SOMs have great potentials for use in constructing robust neural architectures.
Resumo:
International audience
Resumo:
The literature on the determination of flammability limits was reviewed and experts on the ASTM E681 standard were interviewed to identify new means of improving the reproducibility of the ASTM E681 test. Venting was identified as a variable of flammability limits not yet addressed. Limitations of the current system for sealing and venting (a rubber stopper) were identified and addressed by the development of a custom burst disc. The burst disc was evaluated for its ability to hold and maintain a vacuum, its ability to vent at pressures of interest, and for its venting phenomena. The burst disc was deemed to be a satisfactory alternative to the rubber stopper and is recommended to be included in the ASTM E681 standard.
Resumo:
Posidonia oceanica is a Mediterranean endemic seagrass species that forms meadows covering ca. 2.5–4.5 millions of hectares, representing ca.25 % of the infralittoral and shallow circalittoral (down to 50m) bottoms of the Mediterranean. This seagrass is considered a habitat-engineer species and provides an elevated number of ecosystem services. In addition the Marine Strategy Framework Directive (MSFD, 2008/56/EC) includes seagrass like elements to evaluate the “Good Environmental Status” of the European coasts. Information about their phenological characteristic and structure of the meadows is needed for indicator estimations in order to establish their conservation status. The studied meadows are located in the westernmost limit of the P. oceanica distribution (North-western Alboran Sea) in the vecinity of the Strait of Gibraltar, an Atlantic-Mediterranean water transition area. Four sites were selected from East to West: Paraje Natural de Acantilados de Maro-Cerro Gordo (hereafter Maro), Special Area of Conservation “Calahonda” (hereafter Calahonda), Site of Community Importance Estepona (hereafter Estepona) and Punta Chullera (hereafter Chullera) where P. oceanica present their westernmost meadows. Phenological data were recorded from mid November to mid December in P. oceanica patches located at 2 – 3 m depth. At each site three types of patches (patch area <1m2, small patches; 1-2 m2, medium patches and >2 m2, large patches) were sampled. At each patch and site, 3 quadrants of 45 x 45 cm were sampled for shoot and inflorescences density measurements. In each quadrant, 10 random shoots were sampled for shoot morphology (shoot height and number of leaves). Shoot and inflorescences densities were standardized to squared meters. All the studied P. oceanica meadows develop on rocks and they present a fragmented structure with a coverage ranging between ca. 45% in Calahonda and Estepona and ca. 31% in Maro. The meadows of Chullera are reduced to a few small - medium patches with areas ranging between 0.5-1.5 m2 (Fig. 1). The meadows of Chullera and Estepona presented similar values of shoot density (ca. 752 – 662 shoots m-2, respectively) and leaf height (ca. 25 cm). Similarly, the Calahonda and Maro meadows also showed similar values of shoot density (ca. 510 – 550 shoots m-2, respectively) but displaying lower values than those of sites located closer to the Strait of Gibraltar. Regarding patch sizes and leaf height, the longest leaves (ca. 25 cm) were found in medium and large patches, but the number of leaves per shoot were higher in the small and the medium size patches (ca. 6.3 leaves per shoot). Flowering was only detected at the Calahonda meadows with maximum values of ca. 330 inflorescences m-2 (115.2 ± 98.2 inflorescences m-2, n= 9; mean ± SD) (Fig.1). Inflorescence density was not significant different among patches of different sizes. In the Alboran Sea and unlike the studied meadows, extensive beds of P. oceanica occur at the National Park of Cabo de Gata (northeastern Alboran Sea), but from east to west (Strait of Gibraltar), meadows are gradually fragmenting and their depth range decrease from 30m to 2m depth between Cabo de Gata and Chullera, respectively. Probably, the Atlantic influence and the characteristic oceanographic conditions of the Alboran Sea (i.e., higher turbidity, higher water turbulence) represent a developmental limiting factor for P. oceanica at higher depths. Similarities between the meadows located closer to Strait of Gibraltar (Chullera and Estepona) were detected as well as between those more distant (Calahonda and Maro). The first ones showed higher values of shoot densities and leaf heights than the formers, which could be relating to the higher hydrodynamic exposure found at Chullera and Estepona meadows. Regarding flowering events, sexual reproduction in P. oceanica is not common in different locations of the Mediterranean Sea. The available information seems to indicate that flowering represent an irregular event and it is related to high seawater temperature. In fact, the flowering episodes that occurred in Calahonda in November 2015, match with the warmest year ever recorded. This is the third flowering event registered in these meadows located close to the westernmost distributional limit of P. oceanica (Málaga, Alboran Sea), which could indicates that these meadows presents a healthy status. Furthermore, the absence of significant differences in relation to inflorescence density between patches of different sizes may be indicating that the fragmentation does not necessarily influence on the flowering of this seagrass species.
Resumo:
We consider a conservation law perturbed by a linear diffusion and a general form of non-positive dispersion. We prove the convergence of the corresponding solution to the entropy weak solution of the hyperbolic conservation law.
Resumo:
The role of aquaculture in satisfying the global seafood demand is essential. The expansion of the aquaculture sector and the intensification of its activities have enhanced the circulation of infectious agents. Among these, the nervous necrosis virus (NNV) represents the most widespread in the Mediterranean basin. The NNV is responsible for a severe neuropathological condition named viral nervous necrosis (VNN), impacting hugely on fish farms due to the serious disease-associated losses. Therefore, it is fundamental to develop new strategies to limit the impact of VNN in this area, interconnecting several aspects of disease management, diagnosis and prevention. This PhD thesis project, focusing on aquatic animals’ health, deals with these topics. The first two chapters expand the knowledge on VNN epidemiology and distribution, showing the possibility of interspecies transmission, persistent infections and a potential carrier role for invertebrates. The third study expands the horizon of VNN diagnosis, by developing a quick and affordable multiplex RT-PCR able to detect and simultaneously discriminate between NNV variants, reducing considerably the time and costs of genotyping. The fourth study, with the development of a fluorescent in situ hybridization technique and its application to aquatic vertebrates and invertebrates’ tissues, contributes to expand the knowledge on NNV distribution at cellular level, localizing also the replication site of the virus. Finally, the last study dealing with an in vitro evaluation of the NNV susceptibility to a commercial biocide, stress the importance to implement proper disinfectant procedures in fish farms to prevent virus spread and disease outbreaks.
Resumo:
Both compressible and incompressible porous medium models are used in the literature to describe the mechanical aspects of living tissues. Using a stiff pressure law, it is possible to build a link between these two different representations. In the incompressible limit, compressible models generate free boundary problems where saturation holds in the moving domain. Our work aims at investigating the stiff pressure limit of reaction-advection-porous medium equations motivated by tumor development. Our first study concerns the analysis and numerical simulation of a model including the effect of nutrients. A coupled system of equations describes the cell density and the nutrient concentration and the derivation of the pressure equation in the stiff limit was an open problem for which the strong compactness of the pressure gradient is needed. To establish it, we use two new ideas: an L3-version of the celebrated Aronson-Bénilan estimate, and a sharp uniform L4-bound on the pressure gradient. We further investigate the sharpness of this bound through a finite difference upwind scheme, which we prove to be stable and asymptotic preserving. Our second study is centered around porous medium equations including convective effects. We are able to extend the techniques developed for the nutrient case, hence finding the complementarity relation on the limit pressure. Moreover, we provide an estimate of the convergence rate at the incompressible limit. Finally, we study a multi-species system. In particular, we account for phenotypic heterogeneity, including a structured variable into the problem. In this case, a cross-(degenerate)-diffusion system describes the evolution of the phenotypic distributions. Adapting methods recently developed in the context of two-species systems, we prove existence of weak solutions and we pass to the incompressible limit. Furthermore, we prove new regularity results on the total pressure, which is related to the total density by a power law of state.
Resumo:
To compare time and risk to biochemical recurrence (BR) after radical prostatectomy of two chronologically different groups of patients using the standard and the modified Gleason system (MGS). Cohort 1 comprised biopsies of 197 patients graded according to the standard Gleason system (SGS) in the period 1997/2004, and cohort 2, 176 biopsies graded according to the modified system in the period 2005/2011. Time to BR was analyzed with the Kaplan-Meier product-limit analysis and prediction of shorter time to recurrence using univariate and multivariate Cox proportional hazards model. Patients in cohort 2 reflected time-related changes: striking increase in clinical stage T1c, systematic use of extended biopsies, and lower percentage of total length of cancer in millimeter in all cores. The MGS used in cohort 2 showed fewer biopsies with Gleason score ≤ 6 and more biopsies of the intermediate Gleason score 7. Time to BR using the Kaplan-Meier curves showed statistical significance using the MGS in cohort 2, but not the SGS in cohort 1. Only the MGS predicted shorter time to BR on univariate analysis and on multivariate analysis was an independent predictor. The results favor that the 2005 International Society of Urological Pathology modified system is a refinement of the Gleason grading and valuable for contemporary clinical practice.
Resumo:
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Resumo:
The present paper describes a novel, simple and reliable differential pulse voltammetric method for determining amitriptyline (AMT) in pharmaceutical formulations. It has been described for many authors that this antidepressant is electrochemically inactive at carbon electrodes. However, the procedure proposed herein consisted in electrochemically oxidizing AMT at an unmodified carbon nanotube paste electrode in the presence of 0.1 mol L(-1) sulfuric acid used as electrolyte. At such concentration, the acid facilitated the AMT electroxidation through one-electron transfer at 1.33 V vs. Ag/AgCl, as observed by the augmentation of peak current. Concerning optimized conditions (modulation time 5 ms, scan rate 90 mV s(-1), and pulse amplitude 120 mV) a linear calibration curve was constructed in the range of 0.0-30.0 μmol L(-1), with a correlation coefficient of 0.9991 and a limit of detection of 1.61 μmol L(-1). The procedure was successfully validated for intra- and inter-day precision and accuracy. Moreover, its feasibility was assessed through analysis of commercial pharmaceutical formulations and it has been compared to the UV-vis spectrophotometric method used as standard analytical technique recommended by the Brazilian Pharmacopoeia.
Resumo:
Very high field (29)Si-NMR measurements using a fully (29)Si-enriched URu(2)Si(2) single crystal were carried out in order to microscopically investigate the hidden order (HO) state and adjacent magnetic phases in the high field limit. At the lowest measured temperature of 0.4 K, a clear anomaly reflecting a Fermi surface instability near 22 T inside the HO state is detected by the (29)Si shift, (29)K(c). Moreover, a strong enhancement of (29)K(c) develops near a critical field H(c) ≃ 35.6 T, and the ^{29}Si-NMR signal disappears suddenly at H(c), indicating the total suppression of the HO state. Nevertheless, a weak and shifted (29)Si-NMR signal reappears for fields higher than H(c) at 4.2 K, providing evidence for a magnetic structure within the magnetic phase caused by the Ising-type anisotropy of the uranium ordered moments.
Resumo:
Plackett-Burman experimental design was applied for the robustness assessment of GC×GC-qMS (Comprehensive Two-Dimensional Gas Chromatography with Fast Quadrupolar Mass Spectrometric Detection) in quantitative and qualitative analysis of volatiles compounds from chocolate samples isolated by headspace solid-phase microextraction (HS-SPME). The influence of small changes around the nominal level of six factors deemed as important on peak areas (carrier gas flow rate, modulation period, temperature of ionic source, MS photomultiplier power, injector temperature and interface temperature) and of four factors considered as potentially influential on spectral quality (minimum and maximum limits of the scanned mass ranges, ions source temperature and photomultiplier power). The analytes selected for the study were 2,3,5-trimethylpyrazine, 2-octanone, octanal, 2-pentyl-furan, 2,3,5,6-tetramethylpyrazine, and 2-nonanone e nonanal. The factors pointed out as important on the robustness of the system were photomultiplier power for quantitative analysis and lower limit of mass scanning range for qualitative analysis.
Resumo:
A rapid, sensitive and specific method for quantifying propylthiouracil in human plasma using methylthiouracil as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (ethyl acetate). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS/MS) in negative mode (ES-). Chromatography was performed using a Phenomenex Gemini C18 5μm analytical column (4.6mm×150mm i.d.) and a mobile phase consisting of methanol/water/acetonitrile (40/40/20, v/v/v)+0.1% of formic acid. For propylthiouracil and I.S., the optimized parameters of the declustering potential, collision energy and collision exit potential were -60 (V), -26 (eV) and -5 (V), respectively. The method had a chromatographic run time of 2.5min and a linear calibration curve over the range 20-5000ng/mL. The limit of quantification was 20ng/mL. The stability tests indicated no significant degradation. This HPLC-MS/MS procedure was used to assess the bioequivalence of two propylthiouracil 100mg tablet formulations in healthy volunteers of both sexes in fasted and fed state. The geometric mean and 90% confidence interval CI of Test/Reference percent ratios were, without and with food, respectively: 109.28% (103.63-115.25%) and 115.60% (109.03-122.58%) for Cmax, 103.31% (100.74-105.96%) and 103.40% (101.03-105.84) for AUClast. This method offers advantages over those previously reported, in terms of both a simple liquid-liquid extraction without clean-up procedures, as well as a faster run time (2.5min). The LOQ of 20ng/mL is well suited for pharmacokinetic studies. The assay performance results indicate that the method is precise and accurate enough for the routine determination of the propylthiouracil in human plasma. The test formulation with and without food was bioequivalent to reference formulation. Food administration increased the Tmax and decreased the bioavailability (Cmax and AUC).
Resumo:
An unfavorable denture-bearing area could compromise denture retention and stability, limit mastication, and possibly alter masticatory motion. The purpose of this study was to evaluate the masticatory movements of denture wearers with normal and resorbed denture-bearing areas. Completely edentulous participants who received new complete dentures were selected and divided into 2 groups (n=15) according to the condition of their denture-bearing areas as classified by the Kapur method: a normal group (control) (mean age, 65.9 ± 7.8 years) and a resorbed group (mean age, 70.2 ± 7.6 years). Masticatory motion was recorded and analyzed with a kinesiographic device. The patients masticated peanuts and Optocal. The masticatory movements evaluated were the durations of opening, closing, and occlusion; duration of the masticatory cycle; maximum velocities and angles of opening and closing; total masticatory area; and amplitudes of the masticatory cycle. The data were analyzed by 2-way ANOVA and the Tukey honestly significant difference post hoc test (α=.05). The group with a resorbed denture-bearing area had a smaller total masticatory area in the frontal plane and shorter horizontal masticatory amplitude than the group with normal denture-bearing area (P<.05). Denture wearers with resorbed denture-bearing areas showed reduced jaw motion during mastication.