795 resultados para Fuzzy Measure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Fuzzy ART model capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns is described. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns. The generalization to learning both analog and binary input patterns is achieved by replacing appearances of the intersection operator (n) in AHT 1 by the MIN operator (Λ) of fuzzy set theory. The MIN operator reduces to the intersection operator in the binary case. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy set theory play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning stops when the input space is covered by boxes. With fast learning and a finite input set of arbitrary size and composition, learning stabilizes after just one presentation of each input pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that buffers system memory against noise. Using this option, rare events can be rapidly learned, yet previously learned memories are not rapidly erased in response to statistically unreliable input fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive error and maximizes code compression, or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or "hidden units", to met accuracy criteria. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy logic play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved prediction is achieved by training the system several times using different orderings of the input set. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Four classes of simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithm systems. These simulations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is also compared to Salzberg's NGE system and to Simpson's FMMC system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural network realization of the fuzzy Adaptive Resonance Theory (ART) algorithm is described. Fuzzy ART is capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns, thus enabling the network to learn both analog and binary input patterns. In the neural network realization of fuzzy ART, signal transduction obeys a path capacity rule. Category choice is determined by a combination of bottom-up signals and learned category biases. Top-down signals impose upper bounds on feature node activations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article compares the performance of Fuzzy ARTMAP with that of Learned Vector Quantization and Back Propagation on a handwritten character recognition task. Training with Fuzzy ARTMAP to a fixed criterion used many fewer epochs. Voting with Fuzzy ARTMAP yielded the highest recognition rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study sets out to investigate the psychology of immersion and the immersive response of individuals in relation to video and computer games. Initially, an exhaustive review of literature is presented, including research into games, player demographics, personality and identity. Play in traditional psychology is also reviewed, as well as previous research into immersion and attempts to define and measure this construct. An online qualitative study was carried out (N=38), and data was analysed using content analysis. A definition of immersion emerged, as well as a classification of two separate types of immersion, namely, vicarious immersion and visceral immersion. A survey study (N=217) verified the discrete nature of these categories and rejected the null hypothesis that there was no difference between individuals' interpretations of vicarious and visceral immersion. The primary aim of this research was to create a quantitative instrument which measures the immersive response as experienced by the player in a single game session. The IMX Questionnaire was developed using data from the initial qualitative study and quantitative survey. Exploratory Factor Analysis was carried out on data from 300 participants for the IMX Version 1, and Confirmatory Factor Analysis was conducted on data from 380 participants on the IMX Version 2. IMX Version 3 was developed from the results of these analyses. This questionnaire was found to have high internal consistency reliability and validity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a deterministic system with two conserved quantities and infinity many invariant measures. However the systems possess a unique invariant measure when enough stochastic forcing and balancing dissipation are added. We then show that as the forcing and dissipation are removed a unique limit of the deterministic system is selected. The exact structure of the limiting measure depends on the specifics of the stochastic forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new scale that measures how central an event is to a person's identity and life story. For the most stressful or traumatic event in a person's life, the full 20-item Centrality of Event Scale (CES) and the short 7-item scale are reliable (alpha's of .94 and .88, respectively) in a sample of 707 undergraduates. The scale correlates .38 with PTSD symptom severity and .23 with depression. The present findings are discussed in relation to previous work on individual differences related to PTSD symptoms. Possible connections between the CES and measures of maladaptive attributions and rumination are considered along with suggestions for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The percentage of subjects recalling each unit in a list or prose passage is considered as a dependent measure. When the same units are recalled in different tasks, processing is assumed to be the same; when different units are recalled, processing is assumed to be different. Two collections of memory tasks are presented, one for lists and one for prose. The relations found in these two collections are supported by an extensive reanalysis of the existing prose memory literature. The same set of words were learned by 13 different groups of subjects under 13 different conditions. Included were intentional free-recall tasks, incidental free recall following lexical decision, and incidental free recall following ratings of orthographic distinctiveness and emotionality. Although the nine free-recall tasks varied widely with regard to the amount of recall, the relative probability of recall for the words was very similar among the tasks. Imagery encoding and recognition produced relative probabilities of recall that were different from each other and from the free-recall tasks. Similar results were obtained with a prose passage. A story was learned by 13 different groups of subjects under 13 different conditions. Eight free-recall tasks, which varied with respect to incidental or intentional learning, retention interval, and the age of the subjects, produced similar relative probabilities of recall, whereas recognition and prompted recall produced relative probabilities of recall that were different from each other and from the free-recall tasks. A review of the prose literature was undertaken to test the generality of these results. Analysis of variance is the most common statistical procedure in this literature. If the relative probability of recall of units varied across conditions, a units by condition interaction would be expected. For the 12 studies that manipulated retention interval, an average of 21% of the variance was accounted for by the main effect of retention interval, 17% by the main effect of units, and only 2% by the retention interval by units interaction. Similarly, for the 12 studies that varied the age of the subjects, 6% of the variance was accounted for by the main effect of age, 32% by the main effect of units, and only 1% by the interaction of age by units.(ABSTRACT TRUNCATED AT 400 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical learning can be used to extract the words from continuous speech. Gómez, Bion, and Mehler (Language and Cognitive Processes, 26, 212–223, 2011) proposed an online measure of statistical learning: They superimposed auditory clicks on a continuous artificial speech stream made up of a random succession of trisyllabic nonwords. Participants were instructed to detect these clicks, which could be located either within or between words. The results showed that, over the length of exposure, reaction times (RTs) increased more for within-word than for between-word clicks. This result has been accounted for by means of statistical learning of the between-word boundaries. However, even though statistical learning occurs without an intention to learn, it nevertheless requires attentional resources. Therefore, this process could be affected by a concurrent task such as click detection. In the present study, we evaluated the extent to which the click detection task indeed reflects successful statistical learning. Our results suggest that the emergence of RT differences between within- and between-word click detection is neither systematic nor related to the successful segmentation of the artificial language. Therefore, instead of being an online measure of learning, the click detection task seems to interfere with the extraction of statistical regularities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O uso cada vez mais intenso de conceitos subjetivos - provenientes da lógica fuzzy - aplicados a problemas reais nos motivou a desenvolver procedimentos para a introdução destas idéias no âmbito do ensino médio. O projeto propõe inicialmente o estudo de conjuntos fuzzy que podem ser entendidos com exemplos - de variação populacional, de controle de pragas e de epidemias. Posteriormente, usar as “operações fuzzy” Sup e Inf em produtos de matrizes para realizar diagnósticos e avaliações subjetivas. As situações abordadas já estão na literatura (Barros e Bassanezi, 2006), entretanto não como fonte para o Ensino Médio. Um dos objetivos principais deste trabalho é contrapor a crença de exatidão da matemática clássica com os resultados provenientes de lógica subjetiva, utilizando conceitos apropriados para os estudantes destas séries: teoria dos conjuntos, relações e funções, matrizes, equações de diferenças e outros.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines different ways for measuring similarity between software design models for the purpose of software reuse. Current approaches to this problem are discussed and a set of suitable similarity metrics are proposed and evaluated. Work on the optimisation of weights to increase the competence of a CBR system is presented. A graph matching algorithm and associated metrics capturing the structural similarity between UML class diagrams is presented and demonstrated through an example case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diversity gains achievable in the generalised distributed antenna system with cooperative users (GDAS-CU) are considered. A GDAS-CU is comprised of M largely separated access points (APs) at one side of the link, and N geographically closed user terminals (UTs) at the other side. The UTs are collaborating together to enhance the system performance, where an idealised message sharing among the UTs is assumed. First, geometry-based network models are proposed to describe the topology of a GDAS-CU. The mean cross-correlation coefficients of signals received from non-collocated APs and UTs are calculated based on the network topology and the correlation models derived from the empirical data. The analysis is also extendable to more general scenarios where the APs are placed in a clustered form due to the constraints of street layout or building structure. Subsequently, a generalised signal attenuation model derived from several stochastic ray-tracing-based pathloss models is applied to describe the power-decaying pattern in urban built-up areas, where the GDAS-CU may be deployed. Armed with the cross-correlation and pathloss model preliminaries, an intrinsic measure of cooperative diversity obtainable from a GDAS-CU is then derived, which is the number of independent fading channels that can be averaged over to detect symbols. The proposed analytical framework would provide critical insight into the degree of possible performance improvement when combining multiple copies of the received signal in such systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the current study was to evaluate the potential of the dynamic lipolysis model to simulate the absorption of a poorly soluble model drug compound, probucol, from three lipid-based formulations and to predict the in vitro-in vivo correlation (IVIVC) using neuro-fuzzy networks. An oil solution and two self-micro and nano-emulsifying drug delivery systems were tested in the lipolysis model. The release of probucol to the aqueous (micellar) phase was monitored during the progress of lipolysis. These release profiles compared with plasma profiles obtained in a previous bioavailability study conducted in mini-pigs at the same conditions. The release rate and extent of release from the oil formulation were found to be significantly lower than from SMEDDS and SNEDDS. The rank order of probucol released (SMEDDS approximately SNEDDS > oil formulation) was similar to the rank order of bioavailability from the in vivo study. The employed neuro-fuzzy model (AFM-IVIVC) achieved significantly high prediction ability for different data formations (correlation greater than 0.91 and prediction error close to zero), without employing complex configurations. These preliminary results suggest that the dynamic lipolysis model combined with the AFM-IVIVC can be a useful tool in the prediction of the in vivo behavior of lipid-based formulations.