908 resultados para Fruit drop
Resumo:
Jets from drop-on-demand inkjet print-heads consist of a main drop with a trailing filament, which either condenses into the main drop, or breaks up into satellite drops. Filament behaviour is quantitatively similar to that of larger, free symmetrical filamentscan be predicted from the aspect ratio and Ohnesorge number. Symmetrical filaments generated from inkjet print-heads show the same behaviour. A simple model, based on competition between the processes of axial shortening and radial necking, predicts the critical aspect ratio below which the jet condenses into a single drop. The success of this simple criterion supports the underlying physical model. © 2013 American Institute of Physics.
Resumo:
Time-resolved particle image velocimetry (PIV) has been performed inside the nozzle of a commercially available inkjet print-head to obtain the time-dependent velocity waveform. A printhead with a single transparent nozzle 80 μm in orifice diameter was used to eject single droplets at a speed of 5 m/s. An optical microscope was used with an ultra-high-speed camera to capture the motion of particles suspended in a transparent liquid at the center of the nozzle and above the fluid meniscus at a rate of half a million frames per second. Time-resolved velocity fields were obtained from a fluid layer approximately 200 μm thick within the nozzle for a complete jetting cycle. A Lagrangian finite-element numerical model with experimental measurements as inputs was used to predict the meniscus movement. The model predictions showed good agreement with the experimental results. This work provides the first experimental verification of physical models and numerical simulations of flows within a drop-on-demand nozzle. © 2012 Society for Imaging Science and Technology.
Resumo:
Measured drop speeds from a range of industrial drop-on-demand (DoD) ink-jet print head designs scale with the predictions of very simple physical models and results of numerical simulations. The main drop/jet speeds at a specified stand-off depend on fluid properties, nozzle exit diameter, and print head drive amplitude for fixed waveform timescales. Drop speeds from the Xaar, Spectra Dimatix, and MicroFab DoD print heads tested with (i) Newtonian, (ii) weakly elastic, and (iii) highly shear-thinning fluids all show a characteristic linear rise with drive voltage (setting) above an apparent threshold drive voltage. Jetting, simple modeling approaches, and numerical simulations of Newtonian fluids over the typical DoD printing range of surface tensions and viscosities were studied to determine how this threshold drive value and the slope of the characteristic linear rise depend on these fluid properties and nozzle exit area. The final speed is inversely proportional to the nozzle exit area, as expected from volume conservation. These results should assist specialist users in the development and optimization of DoD applications and print head design. For a given density, the drive threshold is determined primarily by viscosity, and the constant of proportionality k linking speed with drive above a drive threshold becomes independent of viscosity and surface tension for more viscous DoD fluid jetting. © 2013 Society for Imaging Science and Technology.
Resumo:
We theoretically simulate and experimentally demonstrate ultra-large through-port extinctions in silicon-based asymmetrically-coupled add-drop microring resonators (MRs). Through-port responses in an add-drop MR are analyzed by simulations and large extinctions are found when the MR is near-critically coupled. Accurate fabrication techniques are applied in producing a series of 20 mu m-radii add-drop microrings with drop-side gap-widths in slight differences. A through-port extinction of about 42.7 dB is measured in an MR with through-and drop-side gap-width to be respectively 280 nm and 295 nm. The large extinction suggests about a 20.5 dB improvement from the symmetrical add-drop MR of the same size and the through-side gap-width. The experimental results are finally compared with the post-fabrication simulations, which show a gap-width tolerance of > 30 nm for the through-port extinction enhancement.
Resumo:
We designed and fabricated a four-channel reconfigurable optical add-drop multiplexer based on silicon photonic wire waveguide, which is controlled through the thermo-optic effect. The effective footprint of the device is about 1000 x 500 mu m(2). The minimum insertion loss including the transmission loss and coupling loss is about 10.7 dB. The tuning bandwidth is about 17 nm, the average tuning efficiency about 6.11 mW/nm and the tuning speed about 24.5 kHz. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We designed and fabricated a four-channel reconfigurable optical add-drop multiplexer based on silicon photonic wire waveguide controlled through thermo-optic effect. The effective footprint of the device is about 1000 x 500 mu m(2). The minimum insertion loss is about 10.7 dB and the tuning bandwidth about 17 nm. The average tuning power efficiency is about 6.187 mW/nm and the tuning speed about 24.4 kHz. The thermo-optic polarization-rotation effect is firstly reported in this paper. (C) 2009 Optical Society of America
Resumo:
We report on the design and fabrication of a photonic crystal (PC) channel drop filter based on an asymmetric silicon-on-insulator (SOI) slab. The filter is composed of two symmetric stick-shape micro-cavities between two single-line-defect (W1) waveguides in a triangular lattice, and the phase matching condition for the filter to improve the drop efficiency is satisfied by modifying the positions and radii of the air holes around the micro-cavities. A sample is then fabricated by using electron beam lithography (EBL) and inductively coupled plasma (ICP) etching processes. The measured 0 factor of the filter is about 1140, and the drop efficiency is estimated to be 73% +/- 5% by fitting the transmission spectrum.
Resumo:
An erratum is presented to correct the calculation of the filtering bandwidth of the micro-ring resonator. (C) 2009 Optical Society of America
Resumo:
For a four-port microracetrack channel drop filter, unexpected transmission characteristics due to strong dispersive coupling are demonstrated by the light tunneling between the input-output waveguides and the resonator, where a large dropping transmission at off-resonance wavelengths is observed by finite-difference time-domain simulation. It causes a severe decline of the extinction ratio and finesse. An appropriate decrease of the coupling strength is found to suppress the dispersive coupling and greately increase the extinction ratio and finesse, a decreased coupling strength can be realized by the application of an asymmetrical coupling waveguide structure. In addition, the profile of the coupling dispersion in the transmission spectra can be predicted based on a coupled mode theory analysis of an equivalent system consisting of two coupling straight waveguides. The effects of structure parameters on the transmission spectra obtained by this method agree well with the numerical results. It is useful to avoid the strong dispersive coupling region in the filter design. (c) 2007 Optical Society of America.
Resumo:
The authors present the observation of wide transmission dips in a microring channel drop filter by two-dimensional finite-difference time-domain simulation. The authors show that distributed mode coupling between the input waveguide and the resonator results in the oscillations of the coupling efficiency and the envelope of transmission spectra with wavelength. The critical coupling as the light just passing through the coupling region is important for optimizing related devices. If the width of the input waveguide is different from that of the ring resonator, the phenomenon can be greatly reduced. (c) 2006 American Institute of Physics.
Resumo:
We report on the design and fabrication of a photonic crystal (PC) channel drop filter based on an asymmetric silicon-on-insulator (SOI) slab. The filter is composed of two symmetric stick-shape micro-cavities between two single-line-defect (W1) waveguides in a triangular lattice, and the phase matching condition for the filter to improve the drop efficiency is satisfied by modifying the positions and radii of the air holes around the micro-cavities. A sample is then fabricated by using electron beam lithography (EBL) and inductively coupled plasma (ICP) etching processes. The measured 0 factor of the filter is about 1140, and the drop efficiency is estimated to be 73% +/- 5% by fitting the transmission spectrum.
Resumo:
Novel compact design for 4-channel SOI-based reconfigurable optical add/drop multiplexer using microring resonators is presented and analyzed. Microring resonators have two important attributes as a key new technology for future optical communications, namely functionality and compactness. Functionality refers to the fact that a wide range of desirable filter characteristics can be synthesized by coupling multiple rings. Compactness refers the fact that ring resonators with radii about 30 mu m can lead to large scale integration of devices with densities on the order of 10(4) similar to 10(5) devices per square centimeter. A 4-channel reconfigurable optical add/drop multiplexer comprises a grid-like array of ridge waveguides which perpendicularly cross through each other. SOI-based resonators consisted of multiple rings at each of the cross-grid nodes serve as the wavelength selective switch, and they can switch an optical signal between two ports by means of tuning refractive index of one of the rings. The thermo-optic coefficient of silicon is 1.86x 10(-4) /K. Thus a temperature rise of 27K will increase the refractive index by 5 x 10(-3), which is enough to cause the switching of our designed microring resonators. The thermo-optic effect is used to suppress the resonator power transfer, rather than to promote loss. Thus, the input signal only suffers small attenuation and simultaneously low crosstalk can be achieved by using multiple rings.