961 resultados para Er3 ions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this Ph.D. project has been the design and characterization of new and more efficient luminescent tools, in particular sensors and labels, for analytical chemistry, medical diagnostics and imaging. Actually both the increasing temporal and spatial resolutions that are demanded by those branches, coupled to a sensitivity that is required to reach the single molecule resolution, can be provided by the wide range of techniques based on luminescence spectroscopy. As far as the development of new chemical sensors is concerned, as chemists we were interested in the preparation of new, efficient, sensing materials. In this context, we kept developing new molecular chemosensors, by exploiting the supramolecular approach, for different classes of analytes. In particular we studied a family of luminescent tetrapodal-hosts based on aminopyridinium units with pyrenyl groups for the detection of anions. These systems exhibited noticeable changes in the photophysical properties, depending on the nature of the anion; in particular, addition of chloride resulted in a conformational change, giving an initial increase in excimeric emission. A good selectivity for dicarboxylic acid was also found. In the search for higher sensitivities, we moved our attention also to systems able to perform amplification effects. In this context we described the metal ion binding properties of three photoactive poly-(arylene ethynylene) co-polymers with different complexing units and we highlighted, for one of them, a ten-fold amplification of the response in case of addition of Zn2+, Cu2+ and Hg2+ ions. In addition, we were able to demonstrate the formation of complexes with Yb3+ an Er3+ and an efficient sensitization of their typical metal centered NIR emission upon excitation of the polymer structure, this feature being of particular interest for their possible applications in optical imaging and in optical amplification for telecommunication purposes. An amplification effect was also observed during this research in silica nanoparticles derivatized with a suitable zinc probe. In this case we were able to prove, for the first time, that nanoparticles can work as off-on chemosensors with signal amplification. Fluorescent silica nanoparticles can be thus seen as innovative multicomponent systems in which the organization of photophysically active units gives rise to fruitful collective effects. These precious effects can be exploited for biological imaging, medical diagnostic and therapeutics, as evidenced also by some results reported in this thesis. In particular, the observed amplification effect has been obtained thanks to a suitable organization of molecular probe units onto the surface of the nanoparticles. In the effort of reaching a deeper inside in the mechanisms which lead to the final amplification effects, we also attempted to find a correlation between the synthetic route and the final organization of the active molecules in the silica network, and thus with those mutual interactions between one another which result in the emerging, collective behavior, responsible for the desired signal amplification. In this context, we firstly investigated the process of formation of silica nanoparticles doped with pyrene derivative and we showed that the dyes are not uniformly dispersed inside the silica matrix; thus, core-shell structures can be formed spontaneously in a one step synthesis. Moreover, as far as the design of new labels is concerned, we reported a new synthetic approach to obtain a class of robust, biocompatible silica core-shell nanoparticles able to show a long-term stability. Taking advantage of this new approach we also showed the synthesis and photophysical properties of core-shell NIR absorbing and emitting materials that proved to be very valuable for in-vivo imaging. In general, the dye doped silica nanoparticles prepared in the framework of this project can conjugate unique properties, such as a very high brightness, due to the possibility to include many fluorophores per nanoparticle, high stability, because of the shielding effect of the silica matrix, and, to date, no toxicity, with a simple and low-cost preparation. All these features make these nanostructures suitable to reach the low detection limits that are nowadays required for effective clinical and environmental applications, fulfilling in this way the initial expectations of this research project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although nickel is a toxic metal for living organisms in its soluble form, its importance in many biological processes recently emerged. In this view, the investigation of the nickel-dependent enzymes urease and [NiFe]-hydrogenase, especially the mechanism of nickel insertion into their active sites, represent two intriguing case studies to understand other analogous systems and therefore to lead to a comprehension of the nickel trafficking inside the cell. Moreover, these two enzymes have been demonstrated to ensure survival and colonization of the human pathogen H. pylori, the only known microorganism able to proliferate in the gastric niche. The right nickel delivering into the urease active site requires the presence of at least four accessory proteins, UreD, UreE, UreF and UreG. Similarly, analogous process is principally mediated by HypA and HypB proteins in the [NiFe]-hydrogenase system. Indeed, HpHypA and HpHypB also have been proposed to act in the activation of the urease enzyme from H. pylori, probably mobilizing nickel ions from HpHypA to the HpUreE-HpUreG complex. A complete comprehension of the interaction mechanism between the accessory proteins and the crosstalk between urease and hydrogenase accessory systems requires the determination of the role of each protein chaperone that strictly depends on their structural and biochemical properties. The availability of HpUreE, HpUreG and HpHypA proteins in a pure form is a pre-requisite to perform all the subsequent protein characterizations, thus their purification was the first aim of this work. Subsequently, the structural and biochemical properties of HpUreE were investigated using multi-angle and quasi-elastic light scattering, as well as NMR and circular dichroism spectroscopy. The thermodynamic parameters of Ni2+ and Zn2+ binding to HpUreE were principally established using isothermal titration calorimetry and the importance of key histidine residues in the process of binding metal ions was studied using site-directed mutagenesis. The molecular details of the HpUreE-HpUreG and HpUreE-HpHypA protein-protein assemblies were also elucidated. The interaction between HpUreE and HpUreG was investigated using ITC and NMR spectroscopy, and the influence of Ni2+ and Zn2+ metal ions on the stabilization of this association was established using native gel electrophoresis, light scattering and thermal denaturation scanning followed by CD spectroscopy. Preliminary HpUreE-HpHypA interaction studies were conducted using ITC. Finally, the possible structural architectures of the two protein-protein assemblies were rationalized using homology modeling and docking computational approaches. All the obtained data were interpreted in order to achieve a more exhaustive picture of the urease activation process, and the correlation with the accessory system of the hydrogenase enzyme, considering the specific role and activity of the involved protein players. A possible function for Zn2+ in the chaperone network involved in Ni2+ trafficking and urease activation is also envisaged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The g-factor is a constant which connects the magnetic moment $vec{mu}$ of a charged particle, of charge q and mass m, with its angular momentum $vec{J}$. Thus, the magnetic moment can be writen $ vec{mu}_J=g_Jfrac{q}{2m}vec{J}$. The g-factor for a free particle of spin s=1/2 should take the value g=2. But due to quantum electro-dynamical effects it deviates from this value by a small amount, the so called g-factor anomaly $a_e$, which is of the order of $10^{-3}$ for the free electron. This deviation is even bigger if the electron is exposed to high electric fields. Therefore highly charged ions, where electric field strength gets values on the order of $10^{13}-10^{16}$V/cm at the position of the bound electron, are an interesting field of investigations to test QED-calculations. In previous experiments [H"aff00,Ver04] using a single hydrogen-like ion confined in a Penning trap an accuracy of few parts in $10^{-9}$ was obtained. In the present work a new method for precise measurement of magnetic the electronic g-factor of hydrogen-like ions is discussed. Due to the unavoidable magnetic field inhomogeneity in a Penning trap, a very important contribution to the systematic uncertainty in the previous measurements arose from the elevated energy of the ion required for the measurement of its motional frequencies. Then it was necessary to extrapolate the result to vanishing energies. In the new method the energy in the cyclotron degree of freedom is reduced to the minimum attainable energy. This method consist in measuring the reduced cyclotron frequency $nu_{+}$ indirectly by coupling the axial to the reduced cyclotron motion by irradiation of the radio frequency $nu_{coup}=nu_{+}-nu_{ax}+delta$ where $delta$ is, in principle, an unknown detuning that can be obtained from the knowledge of the coupling process. Then the only unknown parameter is the desired value of $nu_+$. As a test, a measurement with, for simplicity, artificially increased axial energy was performed yielding the result $g_{exp}=2.000~047~020~8(24)(44)$. This is in perfect agreement with both the theoretical result $g_{theo}=2.000~047~020~2(6)$ and the previous experimental result $g_{exp1}=2.000~047~025~4(15)(44).$ In the experimental results the second error-bar is due to the uncertainty in the accepted value for the electron's mass. Thus, with the new method a higher accuracy in the g-factor could lead by comparison to the theoretical value to an improved value of the electron's mass. [H"af00] H. H"affner et al., Phys. Rev. Lett. 85 (2000) 5308 [Ver04] J. Verd'u et al., Phys. Rev. Lett. 92 (2004) 093002-1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray laser fluorescence spectroscopy of the 2s-2p transition in Li-like ions is promising to become a widely applicable tool to provide information on the nuclear charge radii of stable and radioactive isotopes. For performing such experiments at the Experimental Storage Ring ESR, and the future NESR within the FAIR Project, a grazing incidence pumped (GRIP) x-ray laser (XRL) was set up at GSI Darmstadt using PHELIX (Petawatt High Energy Laser for heavy Ions eXperiments). The experiments demonstrated that lasing using the GRIP geometry could be achieved with relatively low pump energy, a prerequisite for higher repetition rate. In the first chapter the need of a plasma XRL is motivated and a short history of the plasma XRL is presented. The distinctive characteristic of the GRIP method is the controlled deposition of the pump laser energy into the desired plasma density region. While up to now the analysis performed were mostly concerned with the plasma density at the turning point of the main pump pulse, in this thesis it is demonstrated that also the energy deposition is significantly modified for the GRIP method, being sensitive in different ways to a large number of parameters. In the second chapter, the theoretical description of the plasma evolution, active medium and XRL emission properties are reviewed. In addition an innovative analysis of the laser absorption in plasma which includes an inverse Bremsstrahlung (IB) correction factor is presented. The third chapter gives an overview of the experimental set-up and diagnostics, providing an analytical formula for the average and instantaneous traveling wave speed generated with a tilted, on-axis spherical mirror, the only focusing system used up to now in GRIP XRL. The fourth chapter describes the experimental optimization and results. The emphasis is on the effect of the incidence angle of the main pump pulse on the absorption in plasma and on output and gain in different lasing lines. This is compared to the theoretical results for two different incidence angles. Significant corrections for the temperature evolution during the main pump pulse due to the incidence angle are demonstrated in comparison to a simple analytical model which does not take into account the pumping geometry. A much better agreement is reached by the model developed in this thesis. An interesting result is also the appearance of a central dip in the spatially resolved keV emission which was observed in the XRL experiments for the first time and correlates well with previous near field imaging and plasma density profile measurements. In the conclusion also an outlook to the generation of shorter wavelength XRLs is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in the theory of plasma-based collisionally excited x-ray lasers (XRL) have shown an optimization potential based on the dependence of the absorption region of the pumping laser on its angle of incidence on the plasma. For the experimental proof of this idea, a number of diagnostic schemes were developed, tested, qualified and applied. A high-resolution imaging system, yielding the keV emission profile perpendicular to the target surface, provided positions of the hottest plasma regions, interesting for the benchmarking of plasma simulation codes. The implementation of a highly efficient spectrometer for the plasma emission made it possible to gain information about the abundance of the ionization states necessary for the laser action in the plasma. The intensity distribution and deflection angle of the pump laser beam could be imaged for single XRL shots, giving access to its refraction process within the plasma. During a European collaboration campaign at the Lund Laser Center, Sweden, the optimization of the pumping laser incidence angle resulted in a reduction of the required pumping energy for a Ni-like Mo XRL, which enabled the operation at a repetition rate of 10 Hz. Using the experiences gained there, the XRL performance at the PHELIX facility, GSI Darmstadt with respect to achievable repetition rate and at wavelengths below 20 nm was significantly improved, and also important information for the development towards multi-100 eV plasma XRLs was acquired. Due to the setup improvements achieved during the work for this thesis, the PHELIX XRL system now has reached a degree of reproducibility and versatility which is sufficient for demanding applications like the XRL spectroscopy of heavy ions. In addition, a European research campaign, aiming towards plasma XRLs approaching the water-window (wavelengths below 5 nm) was initiated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die beiden in dieser Arbeit betrachteten Systeme, wssrige Lsungen von Ionen und ionische Flssigkeiten, zeigen vielfltige Eigenschaften und Anwendungsmglichkeiten, im Gegensatz zu anderen Systemen. Man findet sie beinahe berall im normalen Leben (Wasser), oder ihre Bedeutung wchst (ioinische Flssigkeiten). Der elektronische Anteil und der atomare Anteil wurden getrennt voneinander untersucht und im Zusammenhang analysiert. Mittels dieser Methode konnten die in dem jeweiligen System auftretenden Mechanismen genauer untersucht werden. Diese Methode wird "Multiscale Modeling" genannt, dabei werden die Untereinheiten eines Systems genauer betrachtet, wie in diesem Fall die elektronischen and atomaren Teilsystem. Die Ergebnisse, die aus den jeweiligen Betrachtungen hervorgehen, zeigen, dass, im Falle von hydratisierten Ionen die Wasser-Wasser Wechselwirkungen wesentlich strker sind als die elektrostatischen Wechselwirkung zwischen Wasser und dem Ion. Anhand der Ergebnisse ergibt sich, dass normale nicht-polarisierbare Modelle ausreichen, um Ionen-Wasser Lsungen zu beschreiben. Im Falle der ionischen Flssigkeiten betrachten wir die elektronische Ebene mittels sehr genauer post-Hartree-Fock Methoden und DFT, deren Ergebnisse dann mit denen auf molekularer Ebene (mithilfe von CPMD/klassischer MD) in Beziehung gesetzt werden. Die bisherigen Ergebnisse zeigen, dass die Wasserstoff-Brckenbindungen im Fall der ionischen Flssigkeiten nicht vernachssigt werden knnen. Weiterhin hat diese Studie herausgefunden, dass die klassischen Kraftfelder die Elektrostatik (Dipol- und Quadrupolmomente) nicht genau genug beschreibt. Die Kombination des mikroskopischen Mechanismus und der molekularen Eigenschaften ist besonders sinnvoll um verschiedene Anhaltspunkte von Simualtionen (z.B. mit klassische Molekular-Dynamik) oder Experimenten zu liefern oder solche zu erklren.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subject of the presented thesis is the accurate measurement of time dilation, aiming at a quantitative test of special relativity. By means of laser spectroscopy, the relativistic Doppler shifts of a clock transition in the metastable triplet spectrum of ^7Li^+ are simultaneously measured with and against the direction of motion of the ions. By employing saturation or optical double resonance spectroscopy, the Doppler broadening as caused by the ions' velocity distribution is eliminated. From these shifts both time dilation as well as the ion velocity can be extracted with high accuracy allowing for a test of the predictions of special relativity. A diode laser and a frequency-doubled titanium sapphire laser were set up for antiparallel and parallel excitation of the ions, respectively. To achieve a robust control of the laser frequencies required for the beam times, a redundant system of frequency standards consisting of a rubidium spectrometer, an iodine spectrometer, and a frequency comb was developed. At the experimental section of the ESR, an automated laser beam guiding system for exact control of polarisation, beam profile, and overlap with the ion beam, as well as a fluorescence detection system were built up. During the first experiments, the production, acceleration and lifetime of the metastable ions at the GSI heavy ion facility were investigated for the first time. The characterisation of the ion beam allowed for the first time to measure its velocity directly via the Doppler effect, which resulted in a new improved calibration of the electron cooler. In the following step the first sub-Doppler spectroscopy signals from an ion beam at 33.8 %c could be recorded. The unprecedented accuracy in such experiments allowed to derive a new upper bound for possible higher-order deviations from special relativity. Moreover future measurements with the experimental setup developed in this thesis have the potential to improve the sensitivity to low-order deviations by at least one order of magnitude compared to previous experiments; and will thus lead to a further contribution to the test of the standard model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The collapse of linear polyelectrolyte chains in a poor solvent: When does a collapsing polyelectrolyte collect its counter ions? The collapse of polyions in a poor solvent is a complex system and is an active research subject in the theoretical polyelectrolyte community. The complexity is due to the subtle interplay between hydrophobic effects, electrostatic interactions, entropy elasticity, intrinsic excluded volume as well as specific counter-ion and co-ion properties. Long range Coulomb forces can obscure single molecule properties. The here presented approach is to use just a small amount of screening salt in combination with a very high sample dilution in order to screen intermolecular interaction whereas keeping intramolecular interaction as much as possible (polyelectrolyte concentration cp 12 mg/L, salt concentration; Cs = 10^-5 mol/L). This is so far not described in literature. During collapse, the polyion is subject to a drastic change in size along with strong reduction of free counterions in solution. Therefore light scattering was utilized to obtain the size of the polyion whereas a conductivity setup was developed to monitor the proceeding of counterion collection by the polyion. Partially quaternized PVPs below and above the Manning limit were investigated and compared to the collapse of their uncharged precursor. The collapses were induced by an isorefractive solvent/non-solvent mixture consisting of 1-propanol and 2-pentanone, with nearly constant dielectric constant. The solvent quality for the uncharged polyion could be quantified which, for the first time, allowed the experimental investigation of the effect of electrostatic interaction prior and during polyion collapse. Given that the Manning parameter M for QPVP4.3 is as low as lB / c = 0.6 (lB the Bjerrum length and c the mean contour distance between two charges), no counterion binding should occur. However the Walden product reduces with first addition of non solvent and accelerates when the structural collapse sets in. Since the dielectric constant of the solvent remains virtually constant during the chain collapse, the counterion binding is entirely caused by the reduction in the polyion chain dimension. The collapse is shifted to lower wns with higher degrees of quaternization as the samples QPVP20 and QPVP35 show (M = 2.8 respectively 4.9). The combination of light scattering and conductivity measurement revealed for the first time that polyion chains already collect their counter ions well above the theta-dimension when the dimensions start to shrink. Due to only small amounts of screening salt, strong electrostatic interactions bias dynamic as well as static light scattering measurements. An extended Zimm formula was derived to account for this interaction and to obtain the real chain dimensions. The effective degree of dissociation g could be obtained semi quantitatively using this extrapolated static in combination with conductivity measurements. One can conclude the expansion factor a and the effective degree of ionization of the polyion to be mutually dependent. In the good solvent regime g of QPVP4.3, QPVP20 and QPVP35 exhibited a decreasing value in the order 1 > g4.3 > g20 > g35. The low values of g for QPVP20 and QPVP35 are assumed to be responsible for the prior collapse of the higher quaternized samples. Collapse theory predicts dipole-dipole attraction to increase accordingly and even predicts a collapse in the good solvent regime. This could be exactly observed for the QPVP35 sample. The experimental results were compared to a newly developed theory of uniform spherical collapse induced by concomitant counterion binding developed by M. Muthukumar and A. Kundagrami. The theory agrees qualitatively with the location of the phase boundary as well as the trend of an increasing expansion with an increase of the degree of quaternization. However experimental determined g for the samples QPVP4.3, QPVP20 and QPVP35 decreases linearly with the degree of quaternization whereas this theory predicts an almost constant value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioconjugation of peptides and asymmetric synthesis of gem-difluoromethylene compounds are areas of the modern organic chemistry for which mild and selective methods continue to be developed. This thesis reports new methodologies for these two areas based on the use of stabilized carbenium ions. The reaction that makes the bioconjugation of peptides possible takes place via the direct nucleophilic substitution of alcohols and is driven by the spontaneous formation of stabilized carbenium ions in water. By reacting with the thiol group of cysteine in very mild conditions and with a high selectivity, these carbenium ions allow the site-specific ligation of polypeptides containing cysteine and their covalent derivatization with functionalized probes. The ligation of the indole ring of tryptophan, an emerging target in bioconjugation, is also shown and takes place in the same conditions. The second area investigated is the challenging access to optically active gem-difluoromethylene compounds. We describe a methodology relying on the synthesis of enantioenriched 1,3-benzodithioles intermediates that are shown to be precursors of the corresponding gem-difluoromethylene analogues by oxidative desulfurization-fluorination. This synthesis takes advantage of the highly enantioselective organocatalytic -alkylation of aldehydes with the benzodithiolylium ion and of the wide possibilities of synthetic transformations offered by the 1,3-benzodithiole group. This approach allows the asymmetric access to complex gem-difluoromethylene compounds through a late-stage fluorination step, thus avoiding the use of fluorinated building blocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Elektronen in wasserstoff- und lithium-hnlichen schweren Ionen sind den extrem starken elektrischen und magnetischen Feldern in der Umgebung des Kerns ausgesetzt. Die Laserspektroskopie der Hyperfeinaufspaltung im Grundzustand des Ions erlaubt daher einen sensitiven Test der Quantenelektrodynamik in starken Feldern insbesondere im magnetischen Sektor. Frhere Messungen an wasserstoffhnlichen Systemen die an einer Elektronenstrahl-Ionenfalle (EBIT) und am Experimentierspeicherring (ESR) der GSI Darmstadt durchgefhrt wurden, waren in ihrer Genauigkeit durch zu geringe Statistik, einer starken Dopplerverbreiterung und der groen Unsicherheit in der Ionenenergie limitiert. Das ganze Potential des QED-Tests kann nur dann ausgeschpft werden, wenn es gelingt sowohl wasserstoff- als auch lithium-hnliche schwere Ionen mit einer um 2-3 Grenordnung gesteigerten Genauigkeit zu spektroskopieren. Um dies zu erreichen, wird gegenwrtig das neue Penningfallensystem SPECTRAP an der GSI aufgebaut und in Betrieb genommen. Es ist speziell fr die Laserspektroskopie an gespeicherten hochgeladenen Ionen optimiert und wird in Zukunft von HITRAP mit nierderenergetischen hochgeladenen Ionen versorgt werden.rnrnSPECTRAP ist eine zylindrische Penningfalle mit axialem Zugang fr die Injektion von Ionen und die Einkopplung eines Laserstrahls sowie einem radialen optischen Zugang fr die Detektion der Fluoreszenz. Um letzteres zu realisieren ist der supraleitende Magnet als Helmholtz-Spulenpaar ausgelegt. Um die gewnschte Genauigkeit bei der Laserspektroskopie zu erreichen, muss ein effizienter und schneller Khlprozess fr die injizierten hochegeladenen Ionen realisiert werden. Dies kann mittels sympathetischer Khlung in einer lasergekhlten Wolke leichter Ionen realisiert werden. Im Rahmen dieser Arbeit wurde ein Lasersystem und eine Ionenquelle fr die Produktion einer solchen 24Mg+ Ionenwolke aufgebaut und erfolgreich an SPECTRAP in Betrieb genommen. Dazu wurde ein Festkrperlasersystem fr die Erzeugung von Licht bei 279.6 nm entworfen und aufgebaut. Es besteht aus einem Faserlaser bei 1118 nm der in zwei aufeinanderfolgenden Frequenzverdopplungsstufen frequenzvervierfacht wird. Die Verdopplerstufen sind als aktiv stabilisierte Resonantoren mit nichtlinearen Kristallen ausgelegt. Das Lasersystem liefert unter optimalen Bedingeungen bis zu 15 mW bei der ultravioletten Wellenlnge und erwies sich whrend der Teststrahlzeiten an SPECTRAP als ausgesprochen zuverlssig. Desweiteren wurde eine Ionequelle fr die gepulste Injektion von Mg+ Ionen in die SPECTRAP Falle entwickelt. Diese basiert auf der Elektronenstoionisation eines thermischen Mg-Atomstrahls und liefert in der gepulsten Extraktion Ionenbndel mit einer kleinen Impuls- und Energieverteilung. Unter Nutzung des Lasersystems konnten damit an SPECTRAP erstmals Ionenwolken mit bis zu 2600 lasergekhlten Mg Ionen erzeugt werden. Der Nachweis erfolgte sowohl mittels Fluoreszenz als auch mit der FFT-ICR Technik. Aus der Analyse des Fluoreszenz-Linienprofils lsst sich sowohl die Sensitivitt auf einzelne gespeicherte Ionen als auch eine erreichte Endtemperatur in der Grenordnung von 100 mK nach wenigen Sekunden Khlzeit belegen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit wurde die Frage untersucht, inwieweit die divergente Synthese von starren dendritischen Gersten genutzt werden kann, um die Eigenschaften von Salzen und Ionen zu verndern und gezielt zu steuern. Motiviert wurde diese Fragestellung durch das Ziel, grere und dadurch schwcher koordinierende Anionen als die bereits in der Literatur beschriebenen Anionen zu erzeugen. In der Tat konnten durch das divergente Wachstum starrer Polyphenylen-Dendronen sterisch sehr anspruchsvolle Borat-Anionen von bislang unerreichter Gre im Nanometerbereich erzeugt werden. Durch die Gre ihrer hydrophoben Hlle und die damit einhergehende sterische Abschirmung der zentralen Ladung weisen starr dendronisierte Ionen eine deutlich verminderte Koordination zu Gegenionen auf. Die Koordinationkraft lie sich sowohl durch eine strkere Verzweigung der dendritischen Hlle als auch durch die Perfluorierung der Ionenoberflche weiter herabsetzen. Schlielich konnten durch den Einbau lichtschaltbarer Funktionen in das starre Dendrimergerst sogar Anionen mit schaltbarer, vernderlicher Gre und Koordinationskraft hergestellt werden. Darber hinaus wurde gezeigt, wie sich Gegenionen in Salzen dendronisierter Ionen austauschen lassen, und es wurde eine neue Klasse von Aryl-Triazol-Dendrimeren entwickelt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential energy curves have been computed for [C2H6]2+ ions and the results used to interpret the conspicuous absence of these ions in 2E mass spectra and in charge-stripping experiments. The energies and structures of geometry-optimized ground-state singlet and excited-state triplet [C2H6]2+ ions have been determined along with energies for different decomposition barriers and dissociation asymptotes. Although singlet and triplet [C2H6]2+ ions can exist as stable entities, they possess low energy barriers to decomposition. Vertical Franck-Condon transitions, involving electron impact ionization of ethane as well as charge-stripping collisions of [C2H6]+ ions, produce [C2H6]2+ ions which promptly dissociate since they are formed with energies in excess of various decomposition barriers. Appearance energies computed for doubly-charged ethane fragment ions are in accordance with experimental values.