957 resultados para Degrees of Freedom
Resumo:
In this paper I discuss one of the most significant strategies in Spinoza’s theoretical approach against those that entrave its understanding in a very powerful way. As well as Descartes, Spinoza uses the inmediate or unreflexive experience for developing his conception of free will or the distinction between body and soul, but he does so in order to prove that the experience is useful to demonstrate some purely anti-Cartesian thesis that express the core principles of Spinozism.
Resumo:
the article explores the putatively non-metaphysical – non-voluntarist, and even non-causal – concept of freedom outlined in Hegel’s work and discusses its influential interpretation by robert Pippin as an ‘essentially practical’ concept. I argue that Hegel’s affirmation of freedom must be distinguished from that of Kant and Fichte, since it does not rely on a prior understanding of self-consciousness as an originally teleological relation and it has not the nature of a claim ‘from a practical point of view’.
Resumo:
Extended contribution to a roundtable on Mark A. Lause's Free Labor: The Civil War and the Making of an American Working Class, emphasizing the wartime labor movement's great difficulty in responding to rapid industrialization brought on by the war, and to the increasing diversity of the labor force brought about by mass immigration.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
This essay addresses the fundamental conceptual challenges which face the development of the Area of Freedom Security and Justice (AFSJ) in the post-Lisbon Treaty era. It argues that Onuf style constructivism is a valid lens with which to examine the development of the AFSJ to date, involving as it does the development of a shared understanding by practitioners, predominantly law enforcement and prosecution professionals, within the structures provided for them, in order to develop a completely new area of law and practice. While this approach will continue to need to be deployed in the development of further new operational areas, such as cybercrime, a new approach is now required, that of constitutionalism. A variety of forms of constitutionalism are then examined in order to establish their suitability as a mode of analysis for these developments.
Resumo:
Small particles and their dynamics are of widespread interest due both to their unique properties and their ubiquity. Here, we investigate several classes of small particles: colloids, polymers, and liposomes. All these particles, due to their size on the order of microns, exhibit significant similarity in that they are large enough to be visualized in microscopes, but small enough to be significantly influenced by thermal (or Brownian) motion. Further, similar optical microscopy and experimental techniques are commonly employed to investigate all these particles. In this work, we develop single particle tracking techniques, which allow thorough characterization of individual particle dynamics, observing many behaviors which would be overlooked by methods which time or ensemble average. The various particle systems are also similar in that frequently, the signal-to-noise ratio represented a significant concern. In many cases, development of image analysis and particle tracking methods optimized to low signal-to-noise was critical to performing experimental observations. The simplest particles studied, in terms of their interaction potentials, were chemically homogeneous (though optically anisotropic) hard-sphere colloids. Using these spheres, we explored the comparatively underdeveloped conjunction of translation and rotation and particle hydrodynamics. Developing off this, the dynamics of clusters of spherical colloids were investigated, exploring how shape anisotropy influences the translation and rotation respectively. Transitioning away from uniform hard-sphere potentials, the interactions of amphiphilic colloidal particles were explored, observing the effects of hydrophilic and hydrophobic interactions upon pattern assembly and inter-particle dynamics. Interaction potentials were altered in a different fashion by working with suspensions of liposomes, which, while homogeneous, introduce the possibility of deformation. Even further degrees of freedom were introduced by observing the interaction of particles and then polymers within polymer suspensions or along lipid tubules. Throughout, while examination of the trajectories revealed that while by some measures, the averaged behaviors accorded with expectation, often closer examination made possible by single particle tracking revealed novel and unexpected phenomena.
Resumo:
We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows the coupling of the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.
Resumo:
This thesis focuses on experimental and numerical studies of the hydrodynamic interaction between two vessels in close proximity in waves. In the model tests, two identical box-like models with round corners were used. Regular waves with the same wave steepness and different wave frequencies were generated. Six degrees of freedom body motions and wave elevations between bodies were measured in a head sea condition. Three initial gap widths were examined. In the numerical computations, a panel-free method based seakeeping program, MAPS0, and a panel method based program, WAMIT, were used for the prediction of body motions and wave elevations. The computed body motions and wave elevations were compared with experimental data.
Resumo:
The main goal of LISA Path finder (LPF) mission is to estimate the acceleration noise models of the overall LISA Technology Package (LTP) experiment on-board. This will be of crucial importance for the future space-based Gravitational-Wave (GW) detectors, like eLISA. Here, we present the Bayesian analysis framework to process the planned system identification experiments designed for that purpose. In particular, we focus on the analysis strategies to predict the accuracy of the parameters that describe the system in all degrees of freedom. The data sets were generated during the latest operational simulations organised by the data analysis team and this work is part of the LTPDA Matlab toolbox.
An appraisal of the implementation of freedom of association as a labour right: Nigerian perspective
Resumo:
No abstract available.
Resumo:
A new type of space debris was recently discovered by Schildknecht in near -geosynchronous orbit (GEO). These objects were later identified as exhibiting properties associated with High Area-to-Mass ratio (HAMR) objects. According to their brightness magnitudes (light curve), high rotation rates and composition properties (albedo, amount of specular and diffuse reflection, colour, etc), it is thought that these objects are multilayer insulation (MLI). Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that their shapes are easily deformed leading to changes in the Area-to-Mass ratio (AMR) over time. This thesis proposes a simple effective flexible model of the thin, deformable membrane with two different methods. Firstly, this debris is modelled with Finite Element Analysis (FEA) by using Bernoulli-Euler theory called “Bernoulli model”. The Bernoulli model is constructed with beam elements consisting 2 nodes and each node has six degrees of freedom (DoF). The mass of membrane is distributed in beam elements. Secondly, the debris based on multibody dynamics theory call “Multibody model” is modelled as a series of lump masses, connected through flexible joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account with lump masses in the joints. The dynamic equations for the masses, including the constraints defined by the connecting rigid rod, are derived using fundamental Newtonian mechanics. The physical properties of both flexible models required by the models (membrane density, reflectivity, composition, etc.), are assumed to be those of multilayer insulation. Both flexible membrane models are then propagated together with classical orbital and attitude equations of motion near GEO region to predict the orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field, luni-solar gravitational fields and self-shadowing effect. These results are then compared to two rigid body models (cannonball and flat rigid plate). In this investigation, when comparing with a rigid model, the evolutions of orbital elements of the flexible models indicate the difference of inclination and secular eccentricity evolutions, rapid irregular attitude motion and unstable cross-section area due to a deformation over time. Then, the Monte Carlo simulations by varying initial attitude dynamics and deformed angle are investigated and compared with rigid models over 100 days. As the results of the simulations, the different initial conditions provide unique orbital motions, which is significantly different in term of orbital motions of both rigid models. Furthermore, this thesis presents a methodology to determine the material dynamic properties of thin membranes and validates the deformation of the multibody model with real MLI materials. Experiments are performed in a high vacuum chamber (10-4 mbar) replicating space environment. A thin membrane is hinged at one end but free at the other. The free motion experiment, the first experiment, is a free vibration test to determine the damping coefficient and natural frequency of the thin membrane. In this test, the membrane is allowed to fall freely in the chamber with the motion tracked and captured through high velocity video frames. A Kalman filter technique is implemented in the tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating motion. The forced motion experiment, the last test, is performed to determine the deformation characteristics of the object. A high power spotlight (500-2000W) is used to illuminate the MLI and the displacements are measured by means of a high resolution laser sensor. Finite Element Analysis (FEA) and multibody dynamics of the experimental setups are used for the validation of the flexible model by comparing with the experimental results of displacements and natural frequencies.
Resumo:
215 p.
Resumo:
Objective: To assess depressive symptoms in men deprived from freedom in a prison in a Colombian intermediate city. Material and Method: A cross sectional study was performed on a sample of three hundred and three patients in the Medium Security penitentiary and Prison Facility of the city of Manizales between April and May 2014. The information was collected through the Zung self-rating depression scale (SDS), subsequently there were established the positive results for depression screening according to the final score of the scale. Results: 303 men deprived from freedom were evaluated, mean age of 32.96 years +/- 10.8 years, 43.5% were living in cohabitation, 38% were single and 10.2% married; 33.7% had a primary education, 58% had secondary or incomplete secondary education, 5.6% reported higher studies; 38.6% (95% CI: 35.8; 41.4) reported symptoms of depression, predominating in ages between 18 to 44 years, no statistically significant differences p> 0.05 between the variables analyzed were found. Conclusions: The results of this study give rise to clinical evaluation, by specialized staff in the area of psychiatry and his intervention, given the characteristics of self-reported depression for this population.
Resumo:
This dissertation examines black officeholding in Wilmington, North Carolina, from emancipation in 1865 through 1876, when Democrats gained control of the state government and brought Reconstruction to an end. It considers the struggle for black office holding in the city, the black men who held office, the dynamic political culture of which they were a part, and their significance in the day-to-day lives of their constituents. Once they were enfranchised, black Wilmingtonians, who constituted a majority of the city’s population, used their voting leverage to negotiate the election of black men to public office. They did so by using Republican factionalism or what the dissertation argues was an alternative partisanship. Ultimately, it was not factional divisions, but voter suppression, gerrymandering, and constitutional revisions that made local government appointive rather than elective, Democrats at the state level chipped away at the political gains black Wilmingtonians had made.
Resumo:
The well-known degrees of freedom problem originally introduced by Nikolai Bernstein (1967) results from the high abundance of degrees of freedom in the musculoskeletal system. Such abundance in motor control have two sides: i) because it is unlikely that the Central Nervous System controls each degree of freedom independently, the complexity of the control needs to be reduced, and ii) because there are many options to perform a movement, a repetition of a given movement is never the same. It leads to two main topics in motor control and biomechanics: motor coordination and motor variability. The present thesis aimed to understand how motor systems behave and adapt under specific conditions. This thesis comprises three studies that focused on three topics of major interest in the field of sports sciences and medicine: expertise, injury risk and fatigue. The first study (expertise) has focused on the muscle coordination topic to further investigate the effect of expertise on the muscle synergistic organization, which ultimately may represent the underlying neural strategies. Studies 2 (excessive medial knee displacement) and 3 (fatigue) both aimed to better understand its impact on the dynamic local stability. The main findings of the present thesis suggest: 1) there is a great robustness in muscle synergistic organization between swimmers at different levels of expertise (study 1, chapter II), which ultimately indicate that differences in muscle coordination is mainly explained by peripheral adaptations; 2) injury risk factors such as excessive medial knee displacement (study 2, chapter III) and fatigue (study 3, chapter IV) alter the dynamic local stability of the neuromuscular system towards a more unstable state. This change in dynamic local stability represents a loss of adaptability in the neuromuscular system reducing the flexibility to adapt to a perturbation.