969 resultados para Condensed Matter - Mesoscale and Nanoscale Physics
Resumo:
We have studied the electronic structure of vertically assembled quantum discs in a magnetic field with varying orientation using the effective mass approximation. We calculate the four energy levels of single-electron quantum discs and the two lowest energy levels of two-electron quantum discs in a magnetic field with varying orientation. The change of the magnetic field as an effective potential strongly modifies the electronic structure, leading to splittings of the levels and anticrossings between the levels. The calculated results also demonstrate the switching between the ground states with the total spin S = 0 and 1. The switching induces a qubit controlled by varying the orientation of the magnetic field.
Resumo:
The electronic structure, electron g factors and optical properties of InAs quantum ellipsoids are investigated, in the framework of the eight-band effective-mass approximation. It is found that the light-hole states come down in comparison with the heavy-hole states when the spheres are elongated, and become the lowest states of the valence band. Circularly polarized emissions under circularly polarized excitations may have opposite polarization factors to the exciting light. For InAs ellipsoids the length, which is smaller than 35 nm, is still in a strongly quantum-confined regime. The electron g factors of InAs spheres decrease with increasing radius, and are nearly 2 when the radius is very small. The quantization of the electron states quenches the orbital angular momentum of the states. Actually, as some of the three dimensions increase, the electron g factors decrease. As more dimensions increase, the g factors decrease more. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension. The magnetic field along the z axis of the crystal structure causes linearly polarized emissions in the spheres, which emit unpolarized light in the absence of magnetic field.
Resumo:
The temperature dependences of the orange and blue emissions in 10, 4.5, and 3 nm ZnS:Mn nanoparticles were investigated. The orange emission is from the T-4(1)-(6)A(1) transition of Mn2+ ions and the blue emission is related to the donor-acceptor recombination in the ZnS host. With increasing temperature, the blue emission has a red-shift. On the other hand, the peak energy of the orange emission is only weakly dependent on temperature. The luminescence intensity of the orange emission decreases rapidly from 110 to 300 K for the 10 nm sample but increases obviously for the 3 nm sample, whereas the emission intensity is nearly, independent of temperature for the 4.5 nm sample. A thermally activated carrier-transfer model has been proposed to explain the observed abnormal temperature behaviour of the orange emission in ZnS:Mn nanoparticles.
Resumo:
SiO2/Si/SiO2 nanometer double barriers (SSSNDB) with Si layers of twenty-seven different thicknesses in a range of 1-5 nm with an interval of 0.2 nm have been deposited on p-Si substrates using two-target alternative magnetron sputtering. Electroluminescence (EL) from the semitransparent Au film/SSSNDB/p-Si diodes and from a control diode without any Si layer have been observed under forward bias. Each EL spectrum of all these diodes can be fitted by two Gaussian bands with peak energies of 1.82 and 2.25 eV, and full widths at half maximum of 0.38 and 0.69 eV, respectively. It is found that the current, EL peak wavelength and intensities of the two Gaussian bands of the Au/SSSNDB/p-Si structure oscillate synchronously with increasing Si layer thickness with a period corresponding to half a de Broglie wavelength of the carriers. The experimental results strongly indicate that the EL originates mainly from two types of luminescence centres with energies of 1.82 and 2.25 eV in the SiO2 barriers, rather than from the nanometer Si well in the SSSNDB. The EL mechanism is discussed in detail.
Resumo:
The interface states of [NiFe/Mo](30) and [Fe/Mo](30) multilayers have been investigated by x-ray small angle reflection and diffuse scattering. Significant interface roughness correlation was observed in both ultrathin [NiFe/Mo](30) and [Fe/Mo](30) multilayers. An uncorrelated roughness of about 27-3.1 Angstrom was revealed in the [NiPe/Mo](30) multilayers, which is explained as originating from a transition layer between the NiFe and the Mo layers. By the technique of diffuse scattering, it is clearly indicated that the interfacial roughness of NiFe/Mo is much smaller than that of Fe/Mo although the lattice mismatch is the same in both multilayers.
Resumo:
A systematic study of the structural and intrinsic magnetic properties of the hydrides R3Fe29-xCrxHy (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. Hydrogenation lends to a relative volume expansion of the unit cell and a decrease in x-ray density for each compound. Anisotropic expansions mainly along the n- and b-axes rather than along the c-axis for all of the compounds upon hydrogenation are observed. The lattice constants and the unit-cell volume of R3Fe29-xCrx and R3Fe29-xCrxHy decrease with increasing R atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in an increase in the Curie temperature and a corresponding increase in the saturation magnetization at room temperature for each compound. After hydrogenation a decrease of 0.34 mu(B)/Fe in the average Fe atomic magnetic moment and a slight increase in the anisotropy field for Y3Fe27.2Cr1.8 are achieved at 4.2 K. First-order magnetization processes (FOMP) occur in magnetic fields of around 1.5 T and 4.0 T at 4.2 K for Nd3Fe24.5Cr4.5H5.0 and TD3Fe27.0Cr2.0H2.8, and around 1.4 T at room temperature for Gd3Fe28.0Cr1.0H4.2. The abnormal crystallographic and magnetic properties of Ce3Fe25.0Cr4.0 and Ce3Fe25.0Cr4.0H5.4 suggest that the Ce ion non-triply ionized.
Resumo:
We have investigated the Raman scattering and the photoluminescence (PL) of ZnSxTe1-x mixed crystals grown by MBE, covering the entire composition range (0 less than or equal to x < 1). The results of Raman studies show that the ZnSxTe1-x mixed crystals display two-mode behaviour. In addition, photoluminescence spectra obtained in backscattering and edge-emission geometries, reflectivity spectra and the: temperature dependence of the photoluminescence of ZnSxTe1-x have been employed to find out the origin of PL emissions in ZnSxTe1-x with different x values. The results indicate that emission bands, for the samples with small x values, can be related to the band gap transitions or a shallow-level emission centre, while as x approaches 1, they are designated to strong radiative recombination of Te isoelectronic centres (IECs).
Resumo:
A systematic investigation of crystallographic and magnetic properties of nitride R3Fe29-xVxN4 (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. Nitrogenation leads to a relative volume expansion of about 6%. The lattice constants and unit cell volume decrease with increasing rare-earth atomic number from Nd to Dy, reflecting the lanthanide contraction. On average, the Curie temperature increases due to the nitrogenation to about 200 K compared with its parent compound. Generally speaking, nitrogenation also results in a remarkable improvement of the saturation magnetization and anisotropy fields at 4.2 K and room temperature for R3Fe29-xVxN4 compared with their parent compounds. The transition temperature indicates the spin reorientations of R3Fe29-xVxN4 for R = Nd and Sm are at around 375 and 370 K which are higher than that of R3Fe29-xVx, for R = Nd and Sm 145 and 140 K, respectively. The magnetohistory effects of R3Fe29-xVxN4 (R = Ce, Nd, and Sm) are observed in low fields of 0.04 T. After nitrogenation the easy magnetization direction of Sm3Fe26.7V2.3 is changed from an easy-cone structure to the b-axis. As a preliminary result, a maximum remanence B-r of 0.94 T, an intrinsic coercivity mu(0)H(C) of 0.75 T, and a maximum energy product (B H)(max) of 108.5 kJ m(-3) for the nitride magnet Sm3Fe26.7V2.3N4 are achieved by ball-milling at 293 K.
Resumo:
It is well known that the value of room-temperature conductivity sigma(RT) of boron-doped silicon films is one order lower than that of phosphorus-doped silicon films, when they are deposited in an identical plasma-enhanced chemical vapour deposition system. We use surface acoustic wave and secondary-ion mass spectrometry techniques to measure the concentration of total and electrically active boron atoms. It is shown that only 0.7% of the total amount of incorporated boron is electrically active. This is evidence that hydrogen atoms can passivate substitutional B-Si bonds by forming the neutral B-H-Si complex. By irradiating the boron-doped samples with a low-energy electron beam, the neutral B-H-Si complex converts into electrically active B-Si bonds and the conductivity can be increased by about one order of magnitude, up to the same level as that of phosphorus-doped samples.
Resumo:
The near-resonance Raman scattering of GaAs/AlAs superlattices is investigated at room temperature. Owing to the resonance enhancement of Frohlich interaction, the scattering intensity of even LO confined modes with A1 symmetry becomes much stronger than that of odd modes with B2 symmetry. The even modes were observed in the polarized spectra, while the odd modes appear in the depolarized spectra as in the off-resonance case. The second-order Raman spectra show that the polarized spectra are composed of the overtone and combinations of even modes, while the depolarized spectra are composed of the combinations of one odd mode and one even mode. The results agree well with the selection rules predicted by the microscopic theory of Raman scattering in superlattices, developed recently by Huang and co-workers. In addition, the interface modes and the combinations of interface modes and confined modes are also observed in the two configurations.
Resumo:
The microstructures in iron- and sulphur-doped InP crystals were studied using both electron microscopy and electron diffraction. A modulated structure has been found in S-doped InP crystal, where the commensurate modulations corresponded to periodicities of 0.68 nm and 0.7 nm in real space and were related to the reflections of the cubic lattice in [111] and [113BAR] directions; they were indexed as q111* = 1/2(a* + b* + c*) and q113BAR* = 1/4(-a* - b* + 3c*), respectively. Single atomic layers of iron precipitate were observed, with preferred orientations along which precipitates are formed. Simulated calculations by means of the dynamical theory of electron diffraction using models for the precipitate structure were in good agreement with our experimental results. The relation between the modulated structure and the precipitates is also discussed.