994 resultados para Bio-heat equation
Resumo:
We quantify the long-time behavior of a system of (partially) inelastic particles in a stochastic thermostat by means of the contractivity of a suitable metric in the set of probability measures. Existence, uniqueness, boundedness of moments and regularity of a steady state are derived from this basic property. The solutions of the kinetic model are proved to converge exponentially as t→ ∞ to this diffusive equilibrium in this distance metrizing the weak convergence of measures. Then, we prove a uniform bound in time on Sobolev norms of the solution, provided the initial data has a finite norm in the corresponding Sobolev space. These results are then combined, using interpolation inequalities, to obtain exponential convergence to the diffusive equilibrium in the strong L¹-norm, as well as various Sobolev norms.
Resumo:
In this paper we study one-dimensional reflected backward stochastic differential equation when the noise is driven by a Brownian motion and an independent Poisson point process when the solution is forced to stay above a right continuous left-hand limited obstacle. We prove existence and uniqueness of the solution by using a penalization method combined with a monotonic limit theorem.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We consider a delay differential equation with two delays. The Hopf bifurcation of this equation is investigated together with the stability of the bifurcated periodic solution, its period and the bifurcation direction. Finally, three applications are given.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
"Vegeu el resum a l’inici del document del fitxer adjunt."
Resumo:
Thermal systems interchanging heat and mass by conduction, convection, radiation (solar and thermal ) occur in many engineering applications like energy storage by solar collectors, window glazing in buildings, refrigeration of plastic moulds, air handling units etc. Often these thermal systems are composed of various elements for example a building with wall, windows, rooms, etc. It would be of particular interest to have a modular thermal system which is formed by connecting different modules for the elements, flexibility to use and change models for individual elements, add or remove elements without changing the entire code. A numerical approach to handle the heat transfer and fluid flow in such systems helps in saving the full scale experiment time, cost and also aids optimisation of parameters of the system. In subsequent sections are presented a short summary of the work done until now on the orientation of the thesis in the field of numerical methods for heat transfer and fluid flow applications, the work in process and the future work.
Resumo:
This paper examines the relationship between the level of public infrastructure and the level of productivity using panel data for the Spanish provinces over the period 1984-2004, a period which is particularly relevant due to the substantial changes occurring in the Spanish economy at that time. The underlying model used for the data analysis is based on the wage equation, which is one of a handful of simultaneous equations which when satisfied correspond to the short-run equilibrium of New Economic Geography theory. This is estimated using a spatial panel model with fixed time and province effects, so that unmodelled space and time constant sources of heterogeneity are eliminated. The model assumes that productivity depends on the level of educational attainment and the public capital stock endowment of each province. The results show that although changes in productivity are positively associated with changes in public investment within the same province, there is a negative relationship between productivity changes and changes in public investment in other regions.
Selection bias and unobservable heterogeneity applied at the wage equation of European married women
Resumo:
This paper utilizes a panel data sample selection model to correct the selection in the analysis of longitudinal labor market data for married women in European countries. We estimate the female wage equation in a framework of unbalanced panel data models with sample selection. The wage equations of females have several potential sources of.
Resumo:
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.