988 resultados para w-beam barrier
Resumo:
The objective of the study was to evaluate the survival response of multi-drug resistant enteropathogenic Escherichia coli and Salmonella paratyphi to the salinity fluctuations induced by a saltwater barrier constructed in Vembanadu lake, which separates the lake into a freshwater dominated southern and brackish water dominated northern part. Therefore, microcosms containing freshwater, brackish water and microcosms with different saline concentrations (5, 10, 15, 20, 25 ppt) inoculated with E. coli/S. paratyphi were monitored up to 34 days at 20 and 30 WC. E. coli and S. paratyphi exhibited significantly higher (p <0.05) survival at 20 WC compared to 30 WC in all microcosms. Despite fresh/brackish water, E. coli and S. paratyphi showed prolonged survival up to 34 days at both temperatures. They also demonstrated better survival potential at all tested saline concentrations except 25 ppt where a significantly higher (p<0.0001) decay was observed. Therefore, enhanced survival exhibited by the multi-drug resistant enteropathogenic E. coli and S. paratyphi over a wide range of salinity levels suggest that they are able to remain viable for a very long time at higher densities in all seasons of the year in Vembanadu lake irrespective of saline concentrations, and may pose potential public health risks during recreational activities
Resumo:
It is demonstrated that distortion of the terahertz beam profile and generation of a cross-polarised component occur when the beam in terahertz time domain spectroscopy and imaging systems interacts with the sample under test. These distortions modify the detected signal, leading to spectral and image artefacts. The degree of distortion depends on the optical design of the system as well as the properties of the sample.
Resumo:
Neuromuscular disorders affect millions of people world-wide. Upper limb tremor is a common symptom, and due to its complex aetiology it is difficult to compensate for except, in particular cases by surgical intervention or drug therapy. Wearable devices that mechanically compensate for limb tremor could benefit a considerable number of patients, but the technology to assist suffers in this way is under-developed. In this paper we propose an innovative orthosis that can dynamically suppress pathological tremor, by applying viscous damping to the affected limb in a controlled manner. The orthosis design utilises a new actuator design based on Magneto-Rheological Fluids that efficiently deliver damping action in response to the instantaneous tremor frequency and amplitude.
Resumo:
Coatings and filters for spaceflight far-infrared components require a robust, non-absorptive low-index thin film material to contrast with the typically higher refractive index infrared materials. Barium fluoride is one such material for the 10 to 20µm wavelength infrared region, however its optical and mechanical properties vary depending on the process used to deposit it in thin film form. Thin films of dielectric produced by thermal evaporation are well documented as having a lower packing density and refractive index than bulk material. The porous and columnar micro structure of these films causes possible deterioration of their performance in varied environmental conditions, primarily because of the moisture absorption. Dielectric thin films produced by the more novel technique of ion-beam sputtering are denser with no columnar micro structure and have a packing density and refractive index similar to the bulk material. A comparative study of Barium Fluoride (BaF2) thin films made by conventional thermal evaporation and ion-beam sputtering is reported. Films of similar thicknesses are deposited on Cadmium Telluride and Germanium substrates. The optical and mechanical properties of these films are then examined. The refractive index n of the films is obtained from applying the modified Manifacier's evvelope method to the spectral measurements made on a Perkin Elmer 580 spectrophotometer. An estimate is also made of the value of the extinction coefficient k in the infrared wavelength transparent region of the thin film. In order to study the mechanical properties of the BaF2 films, and evaluate their usefulness in spaceflight infrared filters and coatings, the thin film samples are subjected to MIL-F-48616 environmental tests. Comparisons are made of their performance under these tests.
Resumo:
Overcoming the natural defensive barrier functions of the eye remains one of the greatest challenges of ocular drug delivery. Cornea is a chemical and mechanical barrier preventing the passage of any foreign bodies including drugs into the eye, but the factors limiting penetration of permeants and nanoparticulate drug delivery systems through the cornea are still not fully understood. In this study, we investigate these barrier properties of the cornea using thiolated and PEGylated (750 and 5000 Da) nanoparticles, sodium fluorescein, and two linear polymers (dextran and polyethylene glycol). Experiments used intact bovine cornea in addition to bovine cornea de-epithelialized or tissues pretreated with cyclodextrin. It was shown that corneal epithelium is the major barrier for permeation; pretreatment of the cornea with β-cyclodextrin provides higher permeation of low molecular weight compounds, such as sodium fluorescein, but does not enhance penetration of nanoparticles and larger molecules. Studying penetration of thiolated and PEGylated (750 and 5000 Da) nanoparticles into the de-epithelialized ocular tissue revealed that interactions between corneal surface and thiol groups of nanoparticles were more significant determinants of penetration than particle size (for the sizes used here). PEGylation with polyethylene glycol of a higher molecular weight (5000 Da) allows penetration of nanoparticles into the stroma, which proceeds gradually, after an initial 1 h lag phase.
Resumo:
The effects on the horizontal ionospheric velocity vectors deduced from radar beam-swinging experiments, which occur when changes in the flow take place on short time scales compared with the experiment cycle time, are analysed in detail. The further complications which arise in the interpretation of beam-swinging data, due to longitudinal gradients in the flow and to field-aligned flows, are also considered. It is concluded that these effects are unlikely to seriously compromise statistical determinations of the response time of the flow, e.g. to changes in the north-south component of the IMF, such as have been recently reported by Etemadiet al. (1988, Planet. Space Sci.36, 471), using EISCAT ‘Polar’ data.
Resumo:
Thin zirconium nitride films were prepared on Si(l 00) substrates at room temperature by ion beam assisted deposition with a 2 keV nitrogen ion beam. Arrival rate ratios ARR(N/Zr) used were 0.19, 0.39, 0.92, and 1.86. The chemical composition and bonding structure of the films were analyzed with X-ray photoelectron spectroscopy (XPS). Deconvolution results for Zr 3d, Zr 3p(3/2), N 1s, O 1s, and C 1s XPS spectra indicated self-consistently the presence of metal Zr-0, nitride ZrN, oxide ZrO2, oxymnide Zr2N2O, and carbide ZrC phases, and the amounts of these compounds were influenced by ARR(N/Zr). The chemical composition ratio N/Zr in the film increased with increasing ARR(N/Zr) until ARR(N/Zr) reached 0.92, reflecting the high reactivity of nitrogen in the ion beam, and stayed almost constant for ARR(N/Zr) >= 1, the excess nitrogen being rejected from the growing film. A considerable incorporation of contaminant oxygen and carbon into the depositing film was attributed to the getter effect of zirconium. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The protective shielding design of a mammography facility requires the knowledge of the scattered radiation by the patient and image receptor components. The shape and intensity of secondary x-ray beams depend on the kVp applied to the x-ray tube, target/filter combination, primary x-ray field size, and scattering angle. Currently, shielding calculations for mammography facilities are performed based on scatter fraction data for Mo/Mo target/filter, even though modern mammography equipment is designed with different anode/filter combinations. In this work we present scatter fraction data evaluated based on the x-ray spectra produced by a Mo/Mo, Mo/Rh and W/Rh target/filter, for 25, 30 and 35 kV tube voltages and scattering angles between 30 and 165 degrees. Three mammography phantoms were irradiated and the scattered radiation was measured with a CdZnTe detector. The primary x-ray spectra were computed with a semiempirical model based on the air kerma and HVL measured with an ionization chamber. The results point out that the scatter fraction values are higher for W/Rh than for Mo/Mo and Mo/Rh, although the primary and scattered air kerma are lower for W/Rh than for Mo/Mo and Mo/Rh target/filter combinations. The scatter fractions computed in this work were applied in a shielding design calculation in order to evaluate shielding requirements for each of these target/filter combinations. Besides, shielding requirements have been evaluated converting the scattered air kerma from mGy/week to mSv/week adopting initially a conversion coefficient from air kerma to effective dose as 1 Sv/Gy and then a mean conversion coefficient specific for the x-ray beam considered. Results show that the thickest barrier should be provided for Mo/Mo target/filter combination. They also point out that the use of the conversion coefficient from air kerma to effective dose as 1 Sv/Gy is conservatively high in the mammography energy range and overestimate the barrier thickness. (c) 2008 American Association of Physicists in Medicine.
Resumo:
Cold atmospheric plasma treatment of microorganisms and living tissues has become a popular topic in modern plasma physics and in medical science. The plasma is capable of bacterial inactivation and noninflammatory tissue modification, which makes it an attractive tool for treatment of skin diseases, open injuries and dental caries. Because of their enhanced plasma chemistry, Dielectric Barrier Discharges (DBDs) have been widely investigated for some emerging applications such as biological and chemical decontamination of media at ambient conditions. Despite the high breakdown voltage in air at atmospheric pressure, the average current of DBD discharges is low. Therefore, a DBD can be applied in direct contact with biological objects without causing any damage. In this work a 60 Hz DBD reactor, which generates cold atmospheric plasma inside Petri dishes with bacterial culture, is investigated. Samples of Staphylococcus aureus, a Gram-positive bacterium and Escherichia coil a Gram-negative bacterium were selected for this study. The bacterial suspensions were evenly spread on agar media planted in Petri dishes. The reactor electrodes were placed outside the Petri dish, thus eliminating the risk of samples microbial contamination. The covered Petri dish with agar medium in it serves as dielectric barrier during the treatment. The plasma processing was conducted at same discharge power (similar to 1.0 W) with different exposure time. Sterilization of E. coil and S. aureus was achieved for less than 20 min. Plasma induced structural damages of bacteria were investigated by Scanning Electron Microscopy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Purpose: Considering the potential of the association between laser ablation and smaller scale hydroxyapatite (HA) coatings to create a stable and bioactive surface on titanium dental implants, the aim of the present study was to determine, by the removal torque test, the effects of a surface treatment created by laser-ablation (Nd:YAG) and, later, thin deposition of HA particles by a chemical process, compared to implants with only laser-ablation and implants with machined surfaces.Materials and Methods: Forty-eight rabbits received I implant by tibia of the following surfaces: machined surface (MS), laser-modified surface (LMS), and biomimetic hydroxiapatite coated surface (HA). After 4, 8, and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition, and roughness.Results: Average removal torque in each period was 23.28, 24.0, and 33.85 Ncm to MS, 33.0, 39.87, and 54.57 Ncm to LMS, and 55.42, 63.71 and 64.0 Ncm to HA. The difference was statistically significant (P < .05) between the LMS-MS and HA-MS surfaces in all periods of evaluation, and between LMS-HA to 4 and 8 weeks of healing. The surface characterization showed a deep, rough, and regular topography provided by the laser conditioning, that was followed by the HA coating.Conclusions: Based on these results, it was possible to conclude that the implants with laser surface modification associated with HA biomimetic coating can shorten the implant healing period by the increase of bone implant interaction during the first 2 months after implant placement. (C) 2009 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 67:1706-1715, 2009
Resumo:
Objectives: The lack of durability in resin-dentine bonds led to the use of chlorhexidine as MMP-inhibitor to prevent the degradation of hybrid layers. Biomimetic remineralisation is a concept-proven approach in preventing the degradation of resin-dentine bonds. The purpose of this study is to examine the integrity of aged resin-dentine interfaces created with a nanofiller-containing etch-and-rinse adhesive after the application of these two approaches.Methods: The more established MMP-inhibition approach was examined using a parallel in vivo and in vitro ageing design to facilitate comparison with the biomimetic remineralisation approach using an in vitro ageing design. Specimens bonded without chlorhexidine exhibited extensive degradation of the hybrid layer after 12 months of in vivo ageing.Results: Dissolution of nanofillers could be seen within a water-rich zone within the adhesive layer. Although specimens bonded with chlorhexidine exhibited intact hybrid layers, water-rich regions remained in those hybrid layers and degradation of nanofillers occurred within the adhesive layer. Specimens subjected to in vitro biomimetic remineralisation followed by in vitro ageing demonstrated intrafibrillar collagen remineralisation within hybrid layers and deposition of mineral nanocrystals in nanovoids within the adhesive.Conclusions: The impact was realized by understanding the lack of an inherent mechanism to remove water from resin-dentine interfaces as the critical barrier to progress in bonding with the etch-and-rinse technique. The experimental biomimetic remineralisation strategy offers a creative solution for incorporating a progressive hydration mechanism to achieve this goal, which warrants its translation into a clinically applicable technique. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The nonlinear refractive index, n(2), of films based on the new glass system Sb(2)O(3)-Sb(2)S(3) was measured at 1064 nm with laser pulses of 15 ps, using a single-beam nonlinear image technique in presence of a phase object. The films were prepared from bulk glasses by RF-sputtering. A large value of n(2) = 3 x 10-(15) m(2)/W, which is three orders of magnitude larger than for CS(2), was determined. The result shows the strong potential of antimony-sulfide glass films for integrated nonlinear optics. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The CMS Hadron Calorimeter in the barrel, endcap and forward regions is fully commissioned. Cosmic ray data were taken with and without magnetic field at the surface hall and after installation in the experimental hall, hundred meters underground. Various measurements were also performed during the few days of beam in the LHC in September 2008. Calibration parameters were extracted, and the energy response of the HCAL determined from test beam data has been checked. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
This paper discusses the design and performance of the time measurement technique and of the synchronization systems of the CMS hadron calorimeter. Time measurement performance results are presented from test beam data taken in the years 2004 and 2006. For hadronic showers of energy greater than 100 GeV, the timing resolution is measured to be about 1.2 ns. Time synchronization and out-of-time background rejection results are presented from the Cosmic Run At Four Tesla and LHC beam runs taken in the Autumn of 2008. The inter-channel synchronization is measured to be within 2 ns. © 2010 IOP Publishing Ltd and SISSA.