909 resultados para variational ensemble Kalman filter
Resumo:
This paper deals with the experimental evaluation of a flow analysis system based on the integration between an under-resolved Navier-Stokes simulation and experimental measurements with the mechanism of feedback (referred to as Measurement-Integrated simulation), applied to the case of a planar turbulent co-flowing jet. The experiments are performed with inner-to-outer-jet velocity ratio around 2 and the Reynolds number based on the inner-jet heights about 10000. The measurement system is a high-speed PIV, which provides time-resolved data of the flow-field, on a field of view which extends to 20 jet heights downstream the jet outlet. The experimental data can thus be used both for providing the feedback data for the simulations and for validation of the MI-simulations over a wide region. The effect of reduced data-rate and spatial extent of the feedback (i.e. measurements are not available at each simulation time-step or discretization point) was investigated. At first simulations were run with full information in order to obtain an upper limit of the MI-simulations performance. The results show the potential of this methodology of reproducing first and second order statistics of the turbulent flow with good accuracy. Then, to deal with the reduced data different feedback strategies were tested. It was found that for small data-rate reduction the results are basically equivalent to the case of full-information feedback but as the feedback data-rate is reduced further the error increases and tend to be localized in regions of high turbulent activity. Moreover, it is found that the spatial distribution of the error looks qualitatively different for different feedback strategies. Feedback gain distributions calculated by optimal control theory are presented and proposed as a mean to make it possible to perform MI-simulations based on localized measurements only. So far, we have not been able to low error between measurements and simulations by using these gain distributions.
Resumo:
This paper discusses user target intention recognition algorithms for pointing - clicking tasks to reduce users' pointing time and difficulty. Predicting targets by comparing the bearing angles to targets proposed as one of the first algorithms [1] is compared with a Kalman Filter prediction algorithm. Accuracy and sensitivity of prediction are used as performance criteria. The outcomes of a standard point and click experiment are used for performance comparison, collected from both able-bodied and impaired users. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
A new adaptive state estimation algorithm, namely adaptive fading Kalman filter (AFKF), is proposed to solve the divergence problem of Kalman filter. A criterion function is constructed to measure the optimality of Kalman filter. The forgetting factor in AFKF is adaptively adjusted by minimizing the defined criterion function using measured outputs. The algorithm remains convergent and tends to be optimal in the presence of model errors. It has been successfully applied to the headbox of a paper-making machine for state estimation.
Resumo:
The algorithm presented in this paper aims to segment the foreground objects in video (e.g., people) given time-varying, textured backgrounds. Examples of time-varying backgrounds include waves on water, clouds moving, trees waving in the wind, automobile traffic, moving crowds, escalators, etc. We have developed a novel foreground-background segmentation algorithm that explicitly accounts for the non-stationary nature and clutter-like appearance of many dynamic textures. The dynamic texture is modeled by an Autoregressive Moving Average Model (ARMA). A robust Kalman filter algorithm iteratively estimates the intrinsic appearance of the dynamic texture, as well as the regions of the foreground objects. Preliminary experiments with this method have demonstrated promising results.
Resumo:
During the past 15 years, a number of initiatives have been undertaken at national level to develop ocean forecasting systems operating at regional and/or global scales. The co-ordination between these efforts has been organized internationally through the Global Ocean Data Assimilation Experiment (GODAE). The French MERCATOR project is one of the leading participants in GODAE. The MERCATOR systems routinely assimilate a variety of observations such as multi-satellite altimeter data, sea-surface temperature and in situ temperature and salinity profiles, focusing on high-resolution scales of the ocean dynamics. The assimilation strategy in MERCATOR is based on a hierarchy of methods of increasing sophistication including optimal interpolation, Kalman filtering and variational methods, which are progressively deployed through the Syst`eme d’Assimilation MERCATOR (SAM) series. SAM-1 is based on a reduced-order optimal interpolation which can be operated using ‘altimetry-only’ or ‘multi-data’ set-ups; it relies on the concept of separability, assuming that the correlations can be separated into a product of horizontal and vertical contributions. The second release, SAM-2, is being developed to include new features from the singular evolutive extended Kalman (SEEK) filter, such as three-dimensional, multivariate error modes and adaptivity schemes. The third one, SAM-3, considers variational methods such as the incremental four-dimensional variational algorithm. Most operational forecasting systems evaluated during GODAE are based on least-squares statistical estimation assuming Gaussian errors. In the framework of the EU MERSEA (Marine EnviRonment and Security for the European Area) project, research is being conducted to prepare the next-generation operational ocean monitoring and forecasting systems. The research effort will explore nonlinear assimilation formulations to overcome limitations of the current systems. This paper provides an overview of the developments conducted in MERSEA with the SEEK filter, the Ensemble Kalman filter and the sequential importance re-sampling filter.
Resumo:
This paper describes the integration of an Utkin observer with the unscented Kalman filter, investigates the performance of the combined observer, termed the unscented Utkin observer, and compares it with an unscented Kalman filter. Simulation tests are performed using a model of a single link robot arm with a revolute elastic joint rotating in a vertical plane. The results indicate that the unscented Utkin observer outperforms the unscented Kalman filter.
Resumo:
Dense deployments of wireless local area networks (WLANs) are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable unless an effective channel assignment scheme is used. In this work, a simple and effective distributed channel assignment (DCA) scheme is proposed. It is shown that in order to maximise throughput, each access point (AP) simply chooses the channel with the minimum number of active neighbour nodes (i.e. nodes associated with neighbouring APs that have packets to send). However, application of such a scheme to practice depends critically on its ability to estimate the number of neighbour nodes in each channel, for which no practical estimator has been proposed before. In view of this, an extended Kalman filter (EKF) estimator and an estimate of the number of nodes by AP are proposed. These not only provide fast and accurate estimates but can also exploit channel switching information of neighbouring APs. Extensive packet level simulation results show that the proposed minimum neighbour and EKF estimator (MINEK) scheme is highly scalable and can provide significant throughput improvement over other channel assignment schemes.
Resumo:
A Kalman filter algorithm has been applied to interpret the optical reflectance excursions during vacuum deposition of infrared coatings and multilayer thin-film filters. The application has been described in detail elsewhere and this paper now reports on-line experience for estimating deposition rate and thickness. The estimation proved sufficiently reliable to firstly 'navigate' regular manufacture (as controlled by a skilled operator) and to subsequently reproduce the skill without interpretation or intervention whilst maintaining exemplary product quality. Optical control by means of this Kalman filter application is therefore considered suitable as a basis for the automated manufacture of infrared coatings and multilayer thin-film filters.
Resumo:
Using the recently-developed mean–variance of logarithms (MVL) diagram, together with the TIGGE archive of medium-range ensemble forecasts from nine different centres, an analysis is presented of the spatiotemporal dynamics of their perturbations, showing how the differences between models and perturbation techniques can explain the shape of their characteristic MVL curves. In particular, a divide is seen between ensembles based on singular vectors or empirical orthogonal functions, and those based on bred vector, Ensemble Transform with Rescaling or Ensemble Kalman Filter techniques. Consideration is also given to the use of the MVL diagram to compare the growth of perturbations within the ensemble with the growth of the forecast error, showing that there is a much closer correspondence for some models than others. Finally, the use of the MVL technique to assist in selecting models for inclusion in a multi-model ensemble is discussed, and an experiment suggested to test its potential in this context.