840 resultados para through pores formation
Resumo:
Humans infected with Bordetella pertussis, the whooping cough bacterium, show evidences of impaired host defenses. This pathogenic bacterium produces a unique adenylate cyclase toxin (ACT) which enters human phagocytes and catalyzes the unregulated formation of cAMP, hampering important bactericidal functions of these immune cells that eventually cause cell death by apoptosis and/or necrosis. Additionally, ACT permeabilizes cells through pore formation in the target cell membrane. Recently, we demonstrated that ACT is internalised into macrophages together with other membrane components, such as the integrin CD11b/CD18 (CR3), its receptor in these immune cells, and GM1. The goal of this study was to determine whether ACT uptake is restricted to receptor-bearing macrophages or on the contrary may also take place into cells devoid of receptor and gain more insights on the signalling involved. Here, we show that ACT is rapidly eliminated from the cell membrane of either CR3-positive as negative cells, though through different entry routes, which depends in part, on the target cell physiology and characteristics. ACT-induced Ca2+ influx and activation of non-receptor Tyr kinases into the target cell appear to be common master denominators in the different endocytic strategies activated by this toxin. Very importantly, we show that, upon incubation with ACT, target cells are capable of repairing the cell membrane, which suggests the mounting of an anti-toxin cell repair-response, very likely involving the toxin elimination from the cell surface.
Resumo:
Zintl phases, a subset of intermetallic compounds characterized by covalently-bonded "sub-structures," surrounded by highly electropositive cations, exhibit precisely the characteristics desired for thermoelectric applications. The requirement that Zintl compounds satisfy the valence of anions through the formation of covalent substructures leads to many unique, complex crystal structures. Such complexity often leads to exceptionally low lattice thermal conductivity due to the containment of heat in low velocity optical modes in the phonon dispersion. To date, excellent thermoelectric properties have been demonstrated in several Zintl compounds. However, compared with the large number of known Zintl phases, very few have been investigated as thermoelectric materials.
From this pool of uninvestigated compounds, we selected a class of Zintl antimonides that share a common structural motif: anionic moieties resembling infinite chains of linked MSb4 tetrahedra, where $M$ is a triel element. The compounds discussed in this thesis (
Resumo:
In many senses, the hydrogen-atom transfer reactions observed with the triplet excited state of pyrophosphito-bridged platinum(II) dimers resemble the reactions of organic ketone nπ* states. The first two chapters describe our attempts to understand the reactivity differences between these two chromophores. Reactivity of the metal dimers is strongly regulated by the detailed nature of the ligands that ring the axial site, the hydrogen-abstraction center. A hydrogen-bonded network linking the ligands facilitates H-atom transfer quenching with alcohols through the formation of a hydrogen-bonded complex between the alcohol and a dimer. For substrates of equal C-H bond strength that lack a hydroxyl group (e.g., benzyl hydrocarbons), the quenching rate is several orders of magnitude slower.
The shape and size of the axial site, as determined by the ligands, also discriminate among quenchers by their steric characteristics. Very small quenchers quench slowly because of high entropies of activation, while very large ones have large enthalpic barriers. The two effects find a balance with quenchers of "just the right size."
The third chapter discusses the design of a mass spectrometer that uses positron annihilation to ionize neutral molecules. The mass spectrometer creates positron-molecule adducts whose annihilation produces fragmentation products that may yield information on the bonding of positrons in such complexes.
Resumo:
Impulsionados pela Lei 12.305/2010, que instituiu a Política Nacional de Resíduos Sólidos (PNRS), os estados brasileiros estão tentando viabilizar, especialmente com foco na destinação dos Resíduos Sólidos Urbanos (RSU), soluções consorciadas, visto que os resultados ambientais em termos de gerenciamento de resíduos sólidos, alcançados nos esforços individuais dos municípios, estão muito longe dos patamares aceitáveis. Sendo assim, o Estado do Rio de Janeiro, assim como demais estados brasileiros, para atendimento a nova PNRS precisará erradicar os lixões até o ano de 2014. Este trabalho tem por objetivo principal avaliar e analisar a viabilidade da estratégia do Ministério do Meio Ambiente (MMA), contemplada na PNRS, que indica a formação de consórcios entre os municípios para um melhor gerenciamento dos RSU, especialmente no que tange à sua destinação final, visando a confirmar a pertinência da escolha ou visualizar outras alternativas, em termos conceituais. Os resultados obtidos nesta pesquisa mostram que é indiscutível a contribuição de uma gestão regionalizada do RSU, através da formação de soluções consorciadas, observados no estudo de caso do Consórcio Costa Verde. Um grande desafio encontrado é o equacionamento de conflitos de interesses, em prol de um melhor gerenciamento dos resíduos, atenuando as divergências político-partidárias para que as tomadas de decisões sejam baseadas, sobretudo nas questões técnicas e administrativas, estabelecendo a melhor forma de proteger o meio ambiente
Resumo:
A tese trata da política de ações afirmativas para pessoas com limitações oriundas de deficiência na educação superior problematizando os fatores que dão sustentabilidade, aperfeiçoam ou dificultam o acesso, a acessibilidade e a permanência de estudantes com tais características neste nível educacional. Valendo-se de fontes bibliográficas, documentais e orais caracteriza-se como pesquisa qualitativa do tipo exploratória. Seus objetivos são: apresentar elementos de referência para a construção de protocolos que dêem sustentabilidade a inclusão deste grupo na educação superior; discutir as bases sobre as quais se assentam o direito à reserva de vaga para este grupo social; investigar, aportada na acessibilidade, fatores facilitadores e dificultadores para o acesso e a permanência de estudantes cotistas com deficiência ao longo do processo de formação. O cenário de investigação é a Universidade do Estado de Rio de Janeiro (UERJ), Campus Francisco Negrão de Lima (Maracanã) e os atores são estudantes com limitações por deficiência ingressantes através da reserva de 5% das vagas (vestibulares 2004/2005). O percurso metodológico compreendeu: entrevista de aproximação; construção de roteiro para entrevista composta de questões semi-estruturadas; oitiva destes estudantes através de entrevista e; análise hermenêutica (MINAYO, 1996, 1999, 2005) para interpretar as informações e apreender as dimensões em que se elaboram os sentidos sobre as ações afirmativas na UERJ. Privilegiamos a narrativa (QUEIROZ, 2004) como prática de linguagem que oportunizou abordar textos científicos, documentos e depoimentos como resultado de processos resultantes de múltiplas determinações e significados específicos expressos em linguagens. As conclusões apontam para a relativa invisibilidade dos estudantes cotistas com deficiência no contexto da UERJ. Tal invisibilidade deve ser pensada como construção na qual participam a Instituição - que se encontra em uma espécie ‗zona de conforto quanto às necessidades formativas destes sujeitos e a própria forma como eles se inserem na Universidade. Os estudantes têm escassa participação cultural, não integram redes de sociabilidade, não se reconhecem como parte de um coletivo (de estudantes cotistas com deficiência) e enfrentam problemas relacionados à pedagogia acadêmica, conforme a gravidade das limitações e os estigmas decorrentes. No tocante a UERJ, verificou-se a convivência de dois movimentos: um, que busca avançar no processo da permanência e conclusão do curso de tais estudantes e outro, que ignora tais necessidades podendo ser caracterizado como não-movimento. Esperamos contribuir para a construção de protocolos de sustentabilidade da inclusão de estudantes deficientes e cooperar para o funcionamento inclusivo das IESPs em dimensões culturais, técnicas, organizacionais e sócio-pedagógicas
Resumo:
We compare the performance of a typical hole transport layer for organic photovoltaics (OPVs), Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin film with a series of PEDOT:PSS layers doped with silver (Ag) nanoparticles (NPs) of various size distributions. These hybrid layers have attracted great attention as buffer layers in plasmonic OPVs, although there is no report up to date on their isolated performance. In the present study we prepared a series of PEDOT:PSS layers sandwiched between indium tin oxide (ITO) and gold (Au) electrodes. Ag NPs were deposited on top of the ITO by electron beam evaporation followed by spin coating of PEDOT:PSS. Electrical characterization performed in the dark showed linear resistive behavior for all the samples; lower resistance was observed for the hybrid ones. It was found that the resistivity of the samples decreases with increasing the particle's size. A substantial increase of the electric field between the ITO and the Au electrodes was seen through the formation of current paths through the Ag NPs. A striking observation is the slight increase in the slope of the current density versus voltage curves when measured under illumination for the case of the plasmonic layers, indicating that changes in the electric field in the vicinity of the NP due to plasmonic excitation is a non-vanishing factor. © 2014 Published by Elsevier B.V. All rights reserved.
Resumo:
Using first-principles band structure methods, we investigate the interactions between different donors in In2O3. Through the formation energy and transition energy level calculations, we find that an oxygen-vacancy creates a deep donor level, while an indium-interstitial or a tin-dopant induces a shallow donor level. The coupling between these donor levels gives rise to even shallower donor levels and leads to a significant reduction in their formation energies. Based on the analysis of the PBE0-corrected band structure and the molecular-orbital bonding diagram, we demonstrate these effects of donor-donor binding. In addition, total energy calculations show that these defect pairs tend to be more stable with respect to the isolated defects due to their negative binding energies. Thus, we may design shallow donor levels to enhance the electrical conductivity via the donor donor binding.
Resumo:
This paper presents a study of the transformation of high-temperature AlN (HT-AlN) interlayer (IL) and its effect on the strain relaxation of Al0.25Ga0.75N/HT-AlN/GaN. The HT-AlN IL capped with Al0.25Ga0.75N transforms into AlGaN IL in which the Al composition increases with the HT-AlN IL thickness while the total Ga content keeps nearly constant. During the HT-AlN IL growth on GaN, the tensile stress is relieved through the formation of V trenches. The filling up of the V trenches by the subsequent Al0.25Ga0.75N growth is identified as the Ga source for the IL transformation, whose effect is very different from a direct growth of HT-AlGaN IL. The a-type dislocations generated during the advancement of V trenches and their filling up propagate into the Al0.25Ga0.75N overlayer. The a-type dislocation density increases dramatically with the IL thickness, which greatly enhances the strain relaxation of Al0.25Ga0.75N. (c) 2008 American Institute of Physics.
Resumo:
A convenient fabrication technology for large-area, highly-ordered nanoelectrode arrays on silicon substrate has been described here, using porous anodic alumina (PAA) as a template. The ultrathin PAA membranes were anodic oxidized utilizing a two-step anodization method, from Al film evaporated on substrate. The purposes for the use of two-step anodization were, first, improving the regularity of the porous structures, and second reducing the thickness of the membranes to 100 similar to 200 nm we desired. Then the nanoelectrode arrays were obtained by electroless depositing Ni-W alloy into the through pores of PAA membranes, making the alloy isolated by the insulating pore walls and contacting with the silicon substrates at the bottoms of pores. The Ni-W alloy was also electroless deposited at the back surface of silicon to form back electrode. Then ohmic contact properties between silicon and Ni-W alloy were investigated after rapid thermal annealing. Scanning electron microscopy (SEM) observations showed the structure characteristics, and the influence factors of fabrication effect were discussed. The current voltage (I-V) curves revealed the contact properties. After annealing in N-2 at 700 degrees C, good linear property was shown with contact resistance of 33 Omega, which confirmed ohmic contacts between silicon and electrodes. These results presented significant application potential of this technology in nanosize current-injection devices in optoelectronics, microelectronics and bio-medical fields.
Resumo:
Three molecularly imprinted monolithic columns with different length but almost identical column volume had been prepared. It was observed that the separation factors of diastereomers and enantiomers were almost unaffected by column length. However, the short column with dimension of 38 mm x 8 mm W. showed much lower resistance to flow rate so that it could be operated at much higher flow rates. By combining stepwise gradient elution with elevated flow rate, the diastereomers of cinchonine and cinchonidine and the enantiomers of Cbz-DL-Trp and Fmoc-DL-Trp were successfully separated within 3 min on the short column with dimension of 38 mm. x 8 mm i.d.. Based on the above results, a cinchonine imprinted monolithic disk with dimension of 10 mm x 16 mm W. was further developed. The SEM image and the pore size distribution profile showed that large flow-through pores are present on the prepared monolith, which allowed mobile phase to flow through the disk with very low resistance. Chromatographic performances on the monolithic disk were almost unchanged compared with the long columns. A rapid separation of cinchonine and cinchonidine was achieved in 2.5 min at the flow rate of 9.0 ml/min. Furthermore, it was observed that there was almost no effect of the flow rate on the dynamic binding capacity at high flow rates. In addition, the effect of the loading concentration of analytes on the dynamic binding capacity, namely adsorption isotherm, was also investigated. A non-linear adsorption isotherm of cinchonine was observed on the molecularly imprinted monolith with cinchonine as template, which might be a main reason to result in the peak tailing of template molecule. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Three organoselenium-containing derivatives of beta-cyclodextrins (beta-CD), mono-6-benzylseleno-6-deoxy-beta-cyclodextrin (compound 1), 6,6'-trimethylenediseleno bridged beta-cyclodextrin dimer(compound 2) and 6,6'- (o-phenylene)diseleno bridged beta-cyclodextrin dimer (compound 3) functioned as mimics of selenium-containing glutathione peroxidase(SeGPX). Acting on H2O2 and GSH, the SeGPX activities of these compounds were 0.83-, 0.26-, and 1. 23-fold of that of Ebselen (0.99 U/mu mol), respectively. The relationship between the structure and the function of these compounds was studied. The results suggested that the hydrophobicity and rigidity of phenyl group is the main reason that accounted for the higher activity of compounds 3 and 1. Phenyl group not only provided the hydrophobic circumstance which is necessary for the catalytic function of selenium, but also make it possible that the cyclodextrin unit of compounds 1 and 3 combines the substrate with a more effective direction. Fluorometric techniques were utilized to determine the yields of the hydroxyl radical produced by Fenton reactions through the formation of hydroxy benzoic acids from benzoate. Compared with Ebselen which showed a significant inhibition effect on the formation of HO., these organoselenium-containing cyclodextrins showed a little scavenging effect on the formation of HO. throughout the whole process.
Resumo:
The catalytic mechanisms of triphenyl bismuth (TPB), dibutyltin dilaurate (DBTDL) and their combination have been studied in a model polyurethane reaction system consisting of copolyether (tetrahydrofuran-ethyleneoxide) and N-100; NMR spectroscopy was used to detect the associations between reactants and catalysts. A relatively stable complex was shown to be formed between hydroxyl and isocyanate; the catalysts showed different effects on the isocyanate-hydroxyl complex, therefore resulting in different curing characteristics. The formation of hydrogen bonding between the complexed hydroxyl and other hydroxyl or the resulting urethane provided an ''auto-catalysis'' to urethane formation. DBTDL destroyed the isocyanate-hydroxyl complex before catalyzing the reaction through the formation of a ternary complex, whereas TPB was able to activate the isocyanate-hydroxyl complex directly to form urethane. The reaction catalyzed by the combination of TPB and DBTDL gained advantages from the multiple catalytic entities, i.e., TPB, DBTDL, and a TPB-DBTDL complex. (C) 1997 John Wiley & Sons, Inc.
Resumo:
This thesis focuses on the study of the geomagnetic orientation and navigation of homing pigeon and migrating bats. Magnetic minerals, possibly the base of the “magnetoreceptors”, which can perceive the magnetic information from geomagnetic field, are studied using advanced mineral magnetic methods in combination of non-magnetic techniques. In addition, the mechanism of magnetite biomineralization in organism has been probed through the formation of ferritin under laboratory-controlled conditions. A series of magnetic measurements of selected pigeon samples found the biogenic magnetite particles. a significant rapid decay of SIRM5K in the interval of 5–20 K on both zero-field cooled and field cooled warming curves suggests the dominance of superparamagnetic particles in the samples. Additionally, we noted that the content of magnetite particles in the male and the female are different. It is also found that bats contain magnetite. The results of room temperature magnetic measurements of Rhinolophus ferrumequinum and Chaerophon plicatus samples indicates there are magnetite in the heads of bats. The concentration of magnetic materials in the brain is higher than that in the skull. The results of low temperature magnetic measurements in Nyctalus plancyi samples show that the head may contain a small quantity of magnetite particles. In order to study the magnetite biomineralizaiton, ferritin was reconstituted. The results of electron nanodiffraction patterns indicate that the dominant mineral phases in the reconstituted ferritin are ferrihydrite, which is similar to that in the native ferritin. The blocking temperature (TB) is near 20K. A series of magnetic hysteresis at low temperatures (3-21K) show the wasp-waisted hysteresis loop. This can be interpreted by either grain size effects (SP + SD) or different coercivities minerals.
Resumo:
The catalytic decomposition of NO over Ag-ZSM-5 catalyst prepared by ion-exchange was investigated. The exchanged silver in the zeolite was reduced and it collected in the course of the reaction to form silver particles of about 20 nm. The catalytic reaction induced a pronounced restructuring of the Ag particles through preferential formation of the (111) facets. These facets were shown to hind a tightly bound oxygen species (O-gamma). The O-gamma species occupies the active sites for NO adsorption resulting in catalyst deactivation. It could be removed by appropriate reducing agents, such as CO, to recover the active sites at elevated temperatures.
Resumo:
Wydział Filologii Polskiej i Klasycznej