981 resultados para surface defect recognition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Terbium ions were successfully incorporated in nano-sized zinc oxide particles with a doping concentration up to 3% by using a wet chemical route. Four narrow emission peaks of Tb3+ ions and a broad emission band of the surface states on ZnO nano-hosts were observed for all Tb-doped nanoparticles. Relaxation of carriers from excited states of ZnO hosts to rare earth (RE) dopants is disclosed by the fact that the emission intensity of Tb3+ centers increases with increased Tb content at the expense of the emission from surface defect states in ZnO matrix. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GaN epilayers grown on sapphire substrates nitridated for various lengthy periods were investigated by light scattering tomography (LST) and Raman scattering. In the LST images of the plane-view epilayers, the light scattering defects distribute in [<11(2)over bar 0>] directions. The defect density is lower in epilayer grown on substrate nitridated for a longer period. The defects are believed to be straight threading edge dislocations on {<1(1)over bar 00>} planes. The Raman shift of E-2 mode is larger in the sample grown on substrate nitridated for a longer period. Our results show that the stress is higher in the sample with fewer dislocations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The qualities of GaSb substrates commonly used for the preparation of III-V antimonide epilayers were studied before and after growing GaInAsSb multi-layers by MOCVD using PL, FTIR and DCXD together with the electrical properties and EPD value. The correlation between the substrate qualities and epilayer properties was briefly discussed. The good property epilayers of GaInAsSb and, then, the high preformance of 2.3 um photodetectors were achieved only using the good quality GaSb wafers as the substrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photoluminescence of porous silicon can be modified sensitively by surface adsorption of different kinds of molecules. A quite different effects of 9-cyanoanthracene and anthracene adsorption on the photoluminescence of porous silicon were observed. The adsorption of 9-cyanoanthracene induced the photoluminescence enhancement, while anthracene adsorption resulted in photoluminescent quenching. An explanation of the interaction of adsorbates with surface defect sites of porous silicon was suggested and discussed. (C) 1998 Elsevier Science S.A.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The morphological defects and uniformity of 4H-SiC epilayers grown by hot wall CVD at 1500 degrees C on off-oriented (0001) Si faces are characterized by atomic force microscope, Nomarski optical microscopy, and Micro-Raman spectroscopy. Typical morphological defects including triangular defects, wavy steps, round pits, and groove defects are observed in mirror-like SiC epilayers. The preparation of the substrate surface is necessary for the growth of high-quality 4H-SiC epitaxial layers with low-surface defect density under optimized growth conditions. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermally stable high-resistivity regions have been formed using hydrogen ion implantation at three energies (50, 100, and 180 keV) with three corresponding doses (6 X 10(14) 1.2 X 10(15), and 3 X 10(15) cm(-2)), oxygen implantation at 280keV with 2 X 10(14) cm(-2) as well as subsequent annealing at about 600 degrees C for 10-20s, in AlGaAs/GaAs multiple epitaxial heterojunction structure. After anncaling at 600 degrees C, the sheet resistivity increases by six orders more of magnitude from the as-grown values. This creation of high resistivity is different from that of the conventional damage induced isolation by H or O single implantation which becomes ineffective when anneal is carried out at 400-600 degrees C and the mechanism there of is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GaN epilayers grown on sapphire substrates nitridated for various lengthy periods were investigated by light scattering tomography (LST) and Raman scattering. In the LST images of the plane-view epilayers, the light scattering defects distribute in [<11(2)over bar 0>] directions. The defect density is lower in epilayer grown on substrate nitridated for a longer period. The defects are believed to be straight threading edge dislocations on {<1(1)over bar 00>} planes. The Raman shift of E-2 mode is larger in the sample grown on substrate nitridated for a longer period. Our results show that the stress is higher in the sample with fewer dislocations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The qualities of GaSb substrates commonly used for the preparation of III-V antimonide epilayers were studied before and after growing GaInAsSb multi-layers by MOCVD using PL, FTIR and DCXD together with the electrical properties and EPD value. The correlation between the substrate qualities and epilayer properties was briefly discussed. The good property epilayers of GaInAsSb and, then, the high preformance of 2.3 um photodetectors were achieved only using the good quality GaSb wafers as the substrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methyl radicals are generated by pyrolysis of azomethane, and the condition for achieving neat adsorption on Cu(110) is described for studying their chemisorption and reaction characteristics. The radical-surface system is examined by X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, temperature-programmed desorption, low-energy electron diffraction (LEED), and high-resolution electron energy loss spectroscopy under ultrahigh vacuum conditions. It is observed that a small fraction of impinging CH3 radicals decompose into methylene possibly on surface defect sites. This type of CH2 radical has no apparent effect on CH3(ads) surface chemistry initiated by dehydrogenation to form active CH2(ads) followed by chain reactions to yield high-mass alkyl products. All thermal desorption products, such as H-2, CH4, C2H4, C2H6, and C3H6, are detected with a single desorption peak near 475 K. The product yields increase with surface coverage until saturation corresponding to 0.50 monolayer of CH3(ads). The mass distribution is, however, invariant with initial CH3(ads) coverage, and all desorbed species exhibit first-order reaction kinetics. LEED measurement reveals a c(2 x 2) adsorbate structure independent of the amount of gaseous exposure. This strongly suggests that the radicals aggregate into close-packed two-dimensional islands at any exposure. The islanding behavior can be correlated with the reaction kinetics and is deemed to be essential for the chain propagation reactions. Some relevant aspects of the CH3/Cu(111) system are also presented. The new results are compared with those of prior studies employing methyl halides as radical sources. Major differences are found in the product distribution and desorption kinetics, and these are attributed to the influence of surface halogen atoms present in those earlier investigations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular Dynamics Simulations (MDS) are constantly being used to make important contributions to our fundamental understanding of material behaviour, at the atomic scale, for a variety of thermodynamic processes. This chapter shows that molecular dynamics simulation is a robust numerical analysis tool in addressing a range of complex nanofinishing (machining) problems that are otherwise difficult or impossible to understand using other methods. For example the mechanism of nanometric cutting of silicon carbide is influenced by a number of variables such as machine tool performance, machining conditions, material properties, and cutting tool performance (material microstructure and physical geometry of the contact) and all these variables cannot be monitored online through experimental examination. However, these could suitably be studied using an advanced simulation based approach such as MDS. This chapter details how MD simulation can be used as a research and commercial tool to understand key issues of ultra precision manufacturing research problems and a specific case was addressed by studying diamond machining of silicon carbide. While this is appreciable, there are a lot of challenges and opportunities in this fertile area. For example, the world of MD simulations is dependent on present day computers and the accuracy and reliability of potential energy functions [109]. This presents a limitation: Real-world scale simulation models are yet to be developed. The simulated length and timescales are far shorter than the experimental ones which couples further with the fact that contact loading simulations are typically done in the speed range of a few hundreds of m/sec against the experimental speed of typically about 1 m/sec [17]. Consequently, MD simulations suffer from the spurious effects of high cutting speeds and the accuracy of the simulation results has yet to be fully explored. The development of user-friendly software could help facilitate molecular dynamics as an integral part of computer-aided design and manufacturing to tackle a range of machining problems from all perspectives, including materials science (phase of the material formed due to the sub-surface deformation layer), electronics and optics (properties of the finished machined surface due to the metallurgical transformation in comparison to the bulk material), and mechanical engineering (extent of residual stresses in the machined component) [110]. Overall, this chapter provided key information concerning diamond machining of SiC which is classed as hard, brittle material. From the analysis presented in the earlier sections, MD simulation has helped in understanding the effects of crystal anisotropy in nanometric cutting of 3C-SiC by revealing the atomic-level deformation mechanisms for different crystal orientations and cutting directions. In addition to this, the MD simulation revealed that the material removal mechanism on the (111) surface of 3C-SiC (akin to diamond) is dominated by cleavage. These understandings led to the development of a new approach named the “surface defect machining” method which has the potential to be more effective to implement than ductile mode micro laser assisted machining or conventional nanometric cutting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NLRC5, a member of the NOD-like receptor (NLR) protein family, has recently been characterized as the master transcriptional regulator of MHCI molecules in lymphocytes, in which it is highly expressed. However, its role in activated dendritic cells (DCs), which are instrumental to initiate T cell responses, remained elusive. We show in this study that, following stimulation of DCs with inflammatory stimuli, not only did NLRC5 level increase, but also its importance in directing MHCI transcription. Despite markedly reduced mRNA and intracellular H2-K levels, we unexpectedly observed nearly normal H2-K surface display in Nlrc5(-/-) DCs. Importantly, this discrepancy between a strong intracellular and a mild surface defect in H2-K levels was observed also in DCs with H2-K transcription defects independent of Nlrc5. Hence, alongside with demonstrating the importance of NLRC5 in MHCI transcription in activated DCs, we uncover a general mechanism counteracting low MHCI surface expression. In agreement with the decreased amount of neosynthesized MHCI, Nlrc5(-/-) DCs exhibited a defective capacity to display endogenous Ags. However, neither T cell priming by endogenous Ags nor cross-priming ability was substantially affected in activated Nlrc5(-/-) DCs. Altogether, these data show that Nlrc5 deficiency, despite significantly affecting MHCI transcription and Ag display, is not sufficient to hinder T cell activation, underlining the robustness of the T cell priming process by activated DCs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The spectral and nonlinear optical characteristics of nano ZnO and its composites are investigated. The fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength and there is a red shift in emission peak with excitation wavelength. Apart from the observation of the reported ultra violet and green emissions, our results reveal that additional blue emissions at 420 nm and 490 nm are developed with increasing particle size. Systematic studies on nano ZnO have indicated the presence of luminescence due to excitonic emissions when excited with 255 nm as well as significant contribution from surface defect states when excited with 325 nm. In the weak confinement regime, the third-order optical susceptibility χ(3) increases with increasing particle size (R) and annealing temperature (T) and a R2 and T2.5 dependence of χ(3) is obtained for nano ZnO. ZnO nanocolloids exhibit induced absorption whereas the self assembled films of ZnO exhibit saturable absorption due to saturation of linear absorption of ZnO defect states and electronic effects. ZnO nanocomposites exhibit negative nonlinear index of refraction which can be attributed to two photon absorption followed by weak free carrier absorption. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. The nonlinear response of ZnO nanocomposites is wavelength dependent and switching from induced absorption to saturable absorption has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an optical limiter. ZnO based nanocomposites are potential materials for enhanced and tunable light emission and for the development of nonlinear optical devices with a relatively small optical limiting threshold.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent rapid developments in biological analysis, medical diagnosis, pharmaceutical industry, and environmental control fuel the urgent need for recognition of particular DNA sequences from samples. Currently, DNA detection techniques use radiochemical, enzymatic, fluorescent, or electrochemiluminescent methods; however, these techniques require costly labeled DNA and highly skilled and cumbersome procedure, which prohibit any in-situ monitoring. Here, we report that hybridization of surface-immobilized single-stranded oligonucleotide on praseodymium oxide (evaluated as a biosensor surface for the first time) with complimentary strands in solution provokes a significant shift of electrical impedance curve. This shift is attributed to a change in electrical characteristics through modification of surface charge of the underlying modified praseodymium oxide upon hybridization with the complementary oligonucelotide strand. On the other hand, using a noncomplementary single strand in solution does not create an equivalent change in the impedance value. This result clearly suggests that a new and simple electrochemical technique based on the change in electrical properties of the modified praseodymium oxide semiconductor surface upon recognition and transduction of a biological event without using labeled species is revealed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oligonucleotides have unique molecular recognition properties, being involved in biological mechanisms such as cell-surface receptor recognition or gene silencing. For their use in human therapy for drug or gene delivery, the cell membrane remains a barrier, but this can be obviated by grafting a hydrophobic tail to the oligonucleotide. Here we demonstrate that two oligonucleotides, one consisting of 12 guanosine units (G(12)), and the other one consisting of five adenosine and seven guanosine (A(5)G(7)) units, when functionalized with poly(butadiene), namely PB-G(12) and PB-A(5)G(7), can be inserted into Langmuir monolayers of dipalmitoyl phosphatidyl choline (DPPC), which served as a cell membrane model. PB-G(12) and PB-A(5)G(7) were found to affect the DPPC monolayer even at high surface pressures. The effects from PB-G(12) were consistently stronger, particularly in reducing the elasticity of the DPPC monolayers, which may have important biological implications. Multilayers of DPPC and nucleotide-based copolymers could be adsorbed onto solid supports, in the form of Y-type LB films, in which the molecular-level interaction led to lower energies in the vibrational spectra of the nucleotide-based copolymers. This successful deposition of solid films opens the way for devices to be produced which exploit the molecular recognition properties of the nucleotides. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A torsional upset forging process is analysed on the basis of plasticity theory for powder metal forging. Torsional upset forging is a process to be performed by rotating a lower die with a punch travelling along the longitudinal direction of a work-piece. In this study, an upper bound analysis considering bulging effect, finite element method simulation (DEFORM3D), and experimental research have been performed for the process. A simple kinematically admissible velocity field for a three dimensional deformation is presented for the torsional upset forging of a cylindrical billet. Distributions of stress, strain, and forging load in the process have been obtained, and compared with those in conventional upset forging. In the process, an increase in a friction factor and rotation speed results in a decrease in magnitude of upset force, dead metal zone, and non-homogeneous deformation. This process can reduce forming load, which leads to improvement of die life, and also reduce bulging effect. In addition, the initial sintered-structure and density distribution is improved by the process and surface defect due to high deformation is decreased.