922 resultados para sums of squares
Resumo:
The paper introduces an efficient construction algorithm for obtaining sparse linear-in-the-weights regression models based on an approach of directly optimizing model generalization capability. This is achieved by utilizing the delete-1 cross validation concept and the associated leave-one-out test error also known as the predicted residual sums of squares (PRESS) statistic, without resorting to any other validation data set for model evaluation in the model construction process. Computational efficiency is ensured using an orthogonal forward regression, but the algorithm incrementally minimizes the PRESS statistic instead of the usual sum of the squared training errors. A local regularization method can naturally be incorporated into the model selection procedure to further enforce model sparsity. The proposed algorithm is fully automatic, and the user is not required to specify any criterion to terminate the model construction procedure. Comparisons with some of the existing state-of-art modeling methods are given, and several examples are included to demonstrate the ability of the proposed algorithm to effectively construct sparse models that generalize well.
Resumo:
In this correspondence new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness via combined parameter regularization and new robust structural selective criteria. In parallel to parameter regularization, we use two classes of robust model selection criteria based on either experimental design criteria that optimizes model adequacy, or the predicted residual sums of squares (PRESS) statistic that optimizes model generalization capability, respectively. Three robust identification algorithms are introduced, i.e., combined A- and D-optimality with regularized orthogonal least squares algorithm, respectively; and combined PRESS statistic with regularized orthogonal least squares algorithm. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalization scheme in orthogonal least squares or regularized orthogonal least squares has been extended such that the new algorithms are computationally efficient. Numerical examples are included to demonstrate effectiveness of the algorithms.
Resumo:
This letter introduces a new robust nonlinear identification algorithm using the Predicted REsidual Sums of Squares (PRESS) statistic and for-ward regression. The major contribution is to compute the PRESS statistic within a framework of a forward orthogonalization process and hence construct a model with a good generalization property. Based on the properties of the PRESS statistic the proposed algorithm can achieve a fully automated procedure without resort to any other validation data set for iterative model evaluation.
Resumo:
An automatic nonlinear predictive model-construction algorithm is introduced based on forward regression and the predicted-residual-sums-of-squares (PRESS) statistic. The proposed algorithm is based on the fundamental concept of evaluating a model's generalisation capability through crossvalidation. This is achieved by using the PRESS statistic as a cost function to optimise model structure. In particular, the proposed algorithm is developed with the aim of achieving computational efficiency, such that the computational effort, which would usually be extensive in the computation of the PRESS statistic, is reduced or minimised. The computation of PRESS is simplified by avoiding a matrix inversion through the use of the orthogonalisation procedure inherent in forward regression, and is further reduced significantly by the introduction of a forward-recursive formula. Based on the properties of the PRESS statistic, the proposed algorithm can achieve a fully automated procedure without resort to any other validation data set for iterative model evaluation. Numerical examples are used to demonstrate the efficacy of the algorithm.
Resumo:
Este trabalho tem por objetivo formalizar os termos das respectivas somas de quadrados e hipóteses mais usuais, que são testadas nos modelos com três fatores de efeitos fixos hierarquizados para dados desbalanceados. Discute-se, também, o problema da interpretação de hipóteses associadas às somas de quadrados, bem como comparam-se os resultados fornecidos por alguns softwares estatísticos.
Resumo:
The main goal of this thesis is to understand and link together some of the early works by Michel Rumin and Pierre Julg. The work is centered around the so-called Rumin complex, which is a construction in subRiemannian geometry. A Carnot manifold is a manifold endowed with a horizontal distribution. If further a metric is given, one gets a subRiemannian manifold. Such data arise in different contexts, such as: - formulation of the second principle of thermodynamics; - optimal control; - propagation of singularities for sums of squares of vector fields; - real hypersurfaces in complex manifolds; - ideal boundaries of rank one symmetric spaces; - asymptotic geometry of nilpotent groups; - modelization of human vision. Differential forms on a Carnot manifold have weights, which produces a filtered complex. In view of applications to nilpotent groups, Rumin has defined a substitute for the de Rham complex, adapted to this filtration. The presence of a filtered complex also suggests the use of the formal machinery of spectral sequences in the study of cohomology. The goal was indeed to understand the link between Rumin's operator and the differentials which appear in the various spectral sequences we have worked with: - the weight spectral sequence; - a special spectral sequence introduced by Julg and called by him Forman's spectral sequence; - Forman's spectral sequence (which turns out to be unrelated to the previous one). We will see that in general Rumin's operator depends on choices. However, in some special cases, it does not because it has an alternative interpretation as a differential in a natural spectral sequence. After defining Carnot groups and analysing their main properties, we will introduce the concept of weights of forms which will produce a splitting on the exterior differential operator d. We shall see how the Rumin complex arises from this splitting and proceed to carry out the complete computations in some key examples. From the third chapter onwards we will focus on Julg's paper, describing his new filtration and its relationship with the weight spectral sequence. We will study the connection between the spectral sequences and Rumin's complex in the n-dimensional Heisenberg group and the 7-dimensional quaternionic Heisenberg group and then generalize the result to Carnot groups using the weight filtration. Finally, we shall explain why Julg required the independence of choices in some special Rumin operators, introducing the Szego map and describing its main properties.
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
By an exponential sum of the Fourier coefficients of a holomorphic cusp form we mean the sum which is formed by first taking the Fourier series of the said form,then cutting the beginning and the tail away and considering the remaining sum on the real axis. For simplicity’s sake, typically the coefficients are normalized. However, this isn’t so important as the normalization can be done and removed simply by using partial summation. We improve the approximate functional equation for the exponential sums of the Fourier coefficients of the holomorphic cusp forms by giving an explicit upper bound for the error term appearing in the equation. The approximate functional equation is originally due to Jutila [9] and a crucial tool for transforming sums into shorter sums. This transformation changes the point of the real axis on which the sum is to be considered. We also improve known upper bounds for the size estimates of the exponential sums. For very short sums we do not obtain any better estimates than the very easy estimate obtained by multiplying the upper bound estimate for a Fourier coefficient (they are bounded by the divisor function as Deligne [2] showed) by the number of coefficients. This estimate is extremely rough as no possible cancellation is taken into account. However, with small sums, it is unclear whether there happens any remarkable amounts of cancellation.
Resumo:
The question posed in the title has been addressed by studying the swelling of celluloses at 20 C by twenty protic solvents, including water; linear- and branched-chain aliphatic alcohols; unsaturated aliphatic alcohols, and alkoxyalcohols. The biopolymers investigated included microcrystalline cellulose, MC, native and never-dried mercerized cotton cellulose, cotton and M-cotton, and native and never-dried mercerized eucalyptus cellulose, eucalyptus and M-eucalyptus, respectively. In most cases, better correlations with the physico-chemical properties of the solvents were obtained when the swelling was expressed as number of moles of solvent/anhydroglucose unit, nSw, rather than as % increase in sample weight. The descriptors employed in these correlations included, where available, Hildebrand`s solubility parameters, Gutmann`s acceptor and donor numbers, solvent molar volume, V(S), as well as solvatochromic parameters. The latter, employed for the first time for correlating the swelling of biopolymers, included empirical solvent polarity, E(T)(30), solvent ""acidity"", alpha(S), ""basicity"", beta(S), and dipolarity/polarizability, pi(S)*, respectively. Small regression coefficients and large sums of the squares of the residues were obtained when values of nSw were correlated with two solvent parameters. Much better correlations were obtained with three solvent parameters. The most statistically significant descriptor in the correlation equation depends on the cellulose, being pi(S)* for MC, cotton, and eucalyptus, and V(S) for M-cotton and M-eucalyptus. The best correlations were obtained with the same set of four parameters for all celluloses, namely, solvent pKa (or alpha(S)) beta(S), pi(S)*, and V(S), respectively. These results indicate that the supra-molecular structure of the biopolymer, in particular the average sizes of crystallites and micro-pores, and the presence of its chains in parallel (cellulose I) or anti-parallel (cellulose II) arrangements control its swelling. At least for the present biopolymer/solvent systems, use of solvatochromic parameters is a superior alternative to Hildebrand`s solubility parameters and/or Gutmann`s acceptor and donor numbers. The relevance of these results to the accessibility of the hydroxyl groups of cellulose, hence to its reactivity, is briefly discussed.
Resumo:
O objetivo deste trabalho foi estudar o efeito do diâmetro dos botões florais de algodoeiro na massa corporal de adultos do bicudo-do-algodoeiro, Anthonomus grandis Boheman (Coleoptera: Curculionidae). O experimento foi realizado em condições de campo e laboratório, em Jaboticabal (SP), Brasil. Foram realizadas seis amostragens, coletando-se ao acaso dez plantas nas cultivares Coodetec 405 e Fibermax 986, avaliando-se o número e o diâmetro de botões florais. Os botões florais com orifícios de oviposição foram individualizados em frascos e observados diariamente para a visualização da emergência dos adultos. Botões florais com maiores diâmetros proporcionam maior massa corporal de adultos de A. grandis recém-emergidos nas duas cultivares.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Recently, a new method to analyze biological nonstationary stochastic variables has been presented. The method is especially suitable to analyze the variation of one biological variable with respect to changes of another variable. Here, it is illustrated by the change of the pulmonary blood pressure in response to a step change of oxygen concentration in the gas that an animal breathes. The pressure signal is resolved into the sum of a set of oscillatory intrinsic mode functions, which have zero “local mean,” and a final nonoscillatory mode. With this device, we obtain a set of “mean trends,” each of which represents a “mean” in a definitive sense, and together they represent the mean trend systematically with different degrees of oscillatory content. Correspondingly, the oscillatory content of the signal about any mean trend can be represented by a set of partial sums of intrinsic mode functions. When the concept of “indicial response function” is used to describe the change of one variable in response to a step change of another variable, we now have a set of indicial response functions of the mean trends and another set of indicial response functions to describe the energy or intensity of oscillations about each mean trend. Each of these can be represented by an analytic function whose coefficients can be determined by a least-squares curve-fitting procedure. In this way, experimental results are stated sharply by analytic functions.
Resumo:
This paper proves that every zero of any n th , n ≥ 2, partial sum of the Riemann zeta function provides a vector space of basic solutions of the functional equation f(x)+f(2x)+⋯+f(nx)=0,x∈R . The continuity of the solutions depends on the sign of the real part of each zero.
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.