804 resultados para social learning analytics
Resumo:
Social media channels, such as Facebook or Twitter, allow for people to express their views and opinions about any public topics. Public sentiment related to future events, such as demonstrations or parades, indicate public attitude and therefore may be applied while trying to estimate the level of disruption and disorder during such events. Consequently, sentiment analysis of social media content may be of interest for different organisations, especially in security and law enforcement sectors. This paper presents a new lexicon-based sentiment analysis algorithm that has been designed with the main focus on real time Twitter content analysis. The algorithm consists of two key components, namely sentiment normalisation and evidence-based combination function, which have been used in order to estimate the intensity of the sentiment rather than positive/negative label and to support the mixed sentiment classification process. Finally, we illustrate a case study examining the relation between negative sentiment of twitter posts related to English Defence League and the level of disorder during the organisation’s related events.
Resumo:
Currently the world around us "reboots" every minute and “staying at the forefront” seems to be a very arduous task. The continuous and “speeded” progress of society requires, from all the actors, a dynamic and efficient attitude both in terms progress monitoring and moving adaptation. With regard to education, no matter how updated we are in relation to the contents, the didactic strategies and technological resources, we are inevitably compelled to adapt to new paradigms and rethink the traditional teaching methods. It is in this context that the contribution of e-learning platforms arises. Here teachers and students have at their disposal new ways to enhance the teaching and learning process, and these platforms are seen, at the present time, as significant virtual teaching and learning supporting environments. This paper presents a Project and attempts to illustrate the potential that new technologies present as a “backing” tool in different stages of teaching and learning at different levels and areas of knowledge, particularly in Mathematics. We intend to promote a constructive discussion moment, exposing our actual perception - that the use of the Learning Management System Moodle, by Higher Education teachers, as supplementary teaching-learning environment for virtual classroom sessions can contribute for greater efficiency and effectiveness of teaching practice and to improve student achievement. Regarding the Learning analytics experience we will present a few results obtained with some assessment Learning Analytics tools, where we profoundly felt that the assessment of students’ performance in online learning environments is a challenging and demanding task.
Resumo:
In this lecture for a second year interdisciplinary course (part of the curriculum innovation programme) We explore the scope of social media analytics and look at two aspects in depth: Analysing for influence (looking at factors such as network structure, propagation of content and interaction), and analysing for trust (looking at different methods including policy, provenance and reputation - both local and global). The lecture notes include a number of short videos, which cannot be included here for copy-write reasons.
Resumo:
The aim of this thesis was to investigate the respective contribution of prior information and sensorimotor constraints to action understanding, and to estimate their consequences on the evolution of human social learning. Even though a huge amount of literature is dedicated to the study of action understanding and its role in social learning, these issues are still largely debated. Here, I critically describe two main perspectives. The first perspective interprets faithful social learning as an outcome of a fine-grained representation of others’ actions and intentions that requires sophisticated socio-cognitive skills. In contrast, the second perspective highlights the role of simpler decision heuristics, the recruitment of which is determined by individual and ecological constraints. The present thesis aims to show, through four experimental works, that these two contributions are not mutually exclusive. A first study investigates the role of the inferior frontal cortex (IFC), the anterior intraparietal area (AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial magnetic stimulation adaptation paradigm (TMSA). The second work studies whether, and how, higher-order and lower-order prior information (acquired from the probabilistic sampling of past events vs. derived from an estimation of biomechanical constraints of observed actions) interacts during the prediction of other people’s intentions. Using a single-pulse TMS procedure, the third study investigates whether the interaction between these two classes of priors modulates the motor system activity. The fourth study tests the extent to which behavioral and ecological constraints influence the emergence of faithful social learning strategies at a population level. The collected data contribute to elucidate how higher-order and lower-order prior expectations interact during action prediction, and clarify the neural mechanisms underlying such interaction. Finally, these works provide/open promising perspectives for a better understanding of social learning, with possible extensions to animal models.
Resumo:
Using path analysis, the present investigation sought to clarify possible operational linkages among constructs from social learning and attribution theories within the context of a self-esteem system. Subjects were 300 undergraduate university students who completed a measure of self-esteem and indicated expectancies for success and minimal goal levels for an experimental task. After completing the task and receiving feedback about their performance, subjects completed causal attribution and self-esteem questionnaires. Results revealed gender differences in the degree and strength of the proposed relations, but not in the mean levels of the variables studied. Results suggested that the integration of social learning and attribution theories within a single conceptual model provides a better understanding of students' behaviors and self-esteem in achievement situations.
Resumo:
Sustainable natural resource use requires that multiple actors reassess their situation in a systemic perspective. This can be conceptualised as a social learning process between actors from rural communities and the experts from outside organisations. A specifically designed workshop oriented towards a systemic view of natural resource use and the enhancement of mutual learning between local and external actors, provided the background for evaluating the potentials and constraints of intensified social learning processes. Case studies in rural communities in India, Bolivia, Peru and Mali showed that changes in the narratives of the participants of the workshop followed a similar temporal sequence relatively independently from their specific contexts. Social learning processes were found to be more likely to be successful if they 1) opened new space for communicative action, allowing for an intersubjective re-definition of the present situation, 2) contributed to rebalance the relationships between social capital and social, emotional and cognitive competencies within and between local and external actors.
Resumo:
The present paper discusses a conceptual, methodological and practical framework within which the limitations of the conventional notion of natural resource management (NRM) can be overcome. NRM is understood as the application of scientific ecological knowledge to resource management. By including a consideration of the normative imperatives that arise from scientific ecological knowledge and submitting them to public scrutiny, ‘sustainable management of natural resources’ can be recontextualised as ‘sustainable governance of natural resources’. This in turn makes it possible to place the politically neutralising discourse of ‘management’ in a space for wider societal debate, in which the different actors involved can deliberate and negotiate the norms, rules and power relations related to natural resource use and sustainable development. The transformation of sustainable management into sustainable governance of natural resources can be conceptualised as a social learning process involving scientists, experts, politicians and local actors, and their corresponding scientific and non-scientific knowledges. The social learning process is the result of what Habermas has described as ‘communicative action’, in contrast to ‘strategic action’. Sustainable governance of natural resources thus requires a new space for communicative action aiming at shared, intersubjectively validated definitions of actual situations and the goals and means required for transforming current norms, rules and power relations in order to achieve sustainable development. Case studies from rural India, Bolivia and Mali explore the potentials and limitations for broadening communicative action through an intensification of social learning processes at the interface of local and external knowledge. Key factors that enable or hinder the transformation of sustainable management into sustainable governance of natural resources through social learning processes and communicative action are discussed.
Resumo:
Social learning approaches have become a prominent focus in studies related to sustainable agriculture. In order to better understand the potential of social learning for more sustainable development, the present study assessed the processes, effects and facilitating elements of interaction related to social learning in the context of Swiss soil protection and the innovative ‘From Farmer - To Farmer’ project. The study reveals that social learning contributes to fundamental transformations of patterns of interactions. However, the study also demonstrates that a learning-oriented understanding of sustainable development implies including analysis of the institutional environments in which the organizations of the individual representatives of face-to-face-based social learning processes are operating. This has shown to be a decisive element when face-to-face-based learning processes of the organisations’ representatives are translated into organisational learning. Moreover, the study revealed that this was achieved not directly through formalisation of new lines of institutionalised cooperation but by establishing links in a ‘boundary space’ trying out new forms of collaboration, aiming at social learning and co-production of knowledge. It is argued that further research on social learning processes should give greater emphasis to this intermediary level of ‘boundary spaces’.
Resumo:
This paper provides a brief introduction to the domain of ‘learning analytics’. We first explain the background and idea behind the concept. Then we give a brief overview of current research issues. We briefly list some more controversial issues before concluding.
Resumo:
In recent years, learning analytics (LA) has attracted a great deal of attention in technology-enhanced learning (TEL) research as practitioners, institutions, and researchers are increasingly seeing the potential that LA has to shape the future TEL landscape. Generally, LA deals with the development of methods that harness educational data sets to support the learning process. This paper provides a foundation for future research in LA. It provides a systematic overview on this emerging field and its key concepts through a reference model for LA based on four dimensions, namely data, environments, context (what?), stakeholders (who?), objectives (why?), and methods (how?). It further identifies various challenges and research opportunities in the area of LA in relation to each dimension.