994 resultados para quadrat-variance methods
Resumo:
The objectives of this work were to estimate the genetic and phenotypic parameters and to predict the genetic and genotypic values of the selection candidates obtained from intraspecific crosses in Panicum maximum as well as the performance of the hybrid progeny of the existing and projected crosses. Seventy-nine intraspecific hybrids obtained from artificial crosses among five apomictic and three sexual autotetraploid individuals were evaluated in a clonal test with two replications and ten plants per plot. Green matter yield, total and leaf dry matter yields and leaf percentage were evaluated in five cuts per year during three years. Genetic parameters were estimated and breeding and genotypic values were predicted using the restricted maximum likelihood/best linear unbiased prediction procedure (REML/BLUP). The dominant genetic variance was estimated by adjusting the effect of full-sib families. Low magnitude individual narrow sense heritabilities (0.02-0.05), individual broad sense heritabilities (0.14-0.20) and repeatability measured on an individual basis (0.15-0.21) were obtained. Dominance effects for all evaluated characteristics indicated that breeding strategies that explore heterosis must be adopted. Less than 5% increase in the parameter repeatability was obtained for a three-year evaluation period and may be the criterion to determine the maximum number of years of evaluation to be adopted, without compromising gain per cycle of selection. The identification of hybrid candidates for future cultivars and of those that can be incorporated into the breeding program was based on the genotypic and breeding values, respectively. The prediction of the performance of the hybrid progeny, based on the breeding values of the progenitors, permitted the identification of the best crosses and indicated the best parents to use in crosses.
Resumo:
Most current methods for adult skeletal age-at-death estimation are based on American samples comprising individuals of European and African ancestry. Our limited understanding of population variability hampers our efforts to apply these techniques to various skeletal populations around the world, especially in global forensic contexts. Further, documented skeletal samples are rare, limiting our ability to test our techniques. The objective of this paper is to test three pelvic macroscopic methods (1-Suchey-Brooks; 2- Lovejoy; 3- Buckberry and Chamberlain) on a documented modern Spanish sample. These methods were selected because they are popular among Spanish anthropologists and because they never have been tested in a Spanish sample. The study sample consists of 80 individuals (55 ♂ and 25 ♀) of known sex and age from the Valladolid collection. Results indicate that in all three methods, levels of bias and inaccuracy increase with age. The Lovejoy method performs poorly (27%) compared with Suchey-Brooks (71%) and Buckberry and Chamberlain (86%). However, the levels of correlation between phases and chronological ages are low and comparable in the three methods (< 0.395). The apparent accuracy of the Suchey-Brooks and Buckberry and Chamberlain methods is largely based on the broad width of the methods" estimated intervals. This study suggests that before systematic application of these three methodologies in Spanish populations, further statistical modeling and research into the co-variance of chronological age with morphological change is necessary. Future methods should be developed specific to various world populations, and should allow for both precision and flexibility in age estimation.
Resumo:
This thesis studies the possibility to use lean tools and methods in a quotation process which is carried out in an office environment. The aim of the study was to find out and test the relevant lean tools and methods which can help to balance and standardize the quotation process, and reduce the variance in quotation lead times and in quality. Seminal works, researches and guide books related to the topic were used as the basis for the theory development. Based on the literature review and the case company’s own lean experience, the applicable lean tools and methods were selected to be tested by a sales support team. Leveling production, by product categorization and value stream mapping, was a key method to be used to balance the quotation process. 5S method was started concurrently for standardizing the work. Results of the testing period showed that lean tools and methods are applicable in office process and selected tools and methods helped to balance and standardize the quotation process. Case company’s sales support team decided to implement new lean based quotation process model.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
Les modèles de séries chronologiques avec variances conditionnellement hétéroscédastiques sont devenus quasi incontournables afin de modéliser les séries chronologiques dans le contexte des données financières. Dans beaucoup d'applications, vérifier l'existence d'une relation entre deux séries chronologiques représente un enjeu important. Dans ce mémoire, nous généralisons dans plusieurs directions et dans un cadre multivarié, la procédure dévéloppée par Cheung et Ng (1996) conçue pour examiner la causalité en variance dans le cas de deux séries univariées. Reposant sur le travail de El Himdi et Roy (1997) et Duchesne (2004), nous proposons un test basé sur les matrices de corrélation croisée des résidus standardisés carrés et des produits croisés de ces résidus. Sous l'hypothèse nulle de l'absence de causalité en variance, nous établissons que les statistiques de test convergent en distribution vers des variables aléatoires khi-carrées. Dans une deuxième approche, nous définissons comme dans Ling et Li (1997) une transformation des résidus pour chaque série résiduelle vectorielle. Les statistiques de test sont construites à partir des corrélations croisées de ces résidus transformés. Dans les deux approches, des statistiques de test pour les délais individuels sont proposées ainsi que des tests de type portemanteau. Cette méthodologie est également utilisée pour déterminer la direction de la causalité en variance. Les résultats de simulation montrent que les tests proposés offrent des propriétés empiriques satisfaisantes. Une application avec des données réelles est également présentée afin d'illustrer les méthodes
Resumo:
The systematic sampling (SYS) design (Madow and Madow, 1944) is widely used by statistical offices due to its simplicity and efficiency (e.g., Iachan, 1982). But it suffers from a serious defect, namely, that it is impossible to unbiasedly estimate the sampling variance (Iachan, 1982) and usual variance estimators (Yates and Grundy, 1953) are inadequate and can overestimate the variance significantly (Särndal et al., 1992). We propose a novel variance estimator which is less biased and that can be implemented with any given population order. We will justify this estimator theoretically and with a Monte Carlo simulation study.
Resumo:
A self-tuning controller which automatically assigns weightings to control and set-point following is introduced. This discrete-time single-input single-output controller is based on a generalized minimum-variance control strategy. The automatic on-line selection of weightings is very convenient, especially when the system parameters are unknown or slowly varying with respect to time, which is generally considered to be the type of systems for which self-tuning control is useful. This feature also enables the controller to overcome difficulties with non-minimum phase systems.
Resumo:
BACKGROUND: Social networks are common in digital health. A new stream of research is beginning to investigate the mechanisms of digital health social networks (DHSNs), how they are structured, how they function, and how their growth can be nurtured and managed. DHSNs increase in value when additional content is added, and the structure of networks may resemble the characteristics of power laws. Power laws are contrary to traditional Gaussian averages in that they demonstrate correlated phenomena. OBJECTIVES: The objective of this study is to investigate whether the distribution frequency in four DHSNs can be characterized as following a power law. A second objective is to describe the method used to determine the comparison. METHODS: Data from four DHSNs—Alcohol Help Center (AHC), Depression Center (DC), Panic Center (PC), and Stop Smoking Center (SSC)—were compared to power law distributions. To assist future researchers and managers, the 5-step methodology used to analyze and compare datasets is described. RESULTS: All four DHSNs were found to have right-skewed distributions, indicating the data were not normally distributed. When power trend lines were added to each frequency distribution, R(2) values indicated that, to a very high degree, the variance in post frequencies can be explained by actor rank (AHC .962, DC .975, PC .969, SSC .95). Spearman correlations provided further indication of the strength and statistical significance of the relationship (AHC .987. DC .967, PC .983, SSC .993, P<.001). CONCLUSIONS: This is the first study to investigate power distributions across multiple DHSNs, each addressing a unique condition. Results indicate that despite vast differences in theme, content, and length of existence, DHSNs follow properties of power laws. The structure of DHSNs is important as it gives insight to researchers and managers into the nature and mechanisms of network functionality. The 5-step process undertaken to compare actor contribution patterns can be replicated in networks that are managed by other organizations, and we conjecture that patterns observed in this study could be found in other DHSNs. Future research should analyze network growth over time and examine the characteristics and survival rates of superusers.
Resumo:
A truly variance-minimizing filter is introduced and its per for mance is demonstrated with the Korteweg– DeV ries (KdV) equation and with a multilayer quasigeostrophic model of the ocean area around South Africa. It is recalled that Kalman-like filters are not variance minimizing for nonlinear model dynamics and that four - dimensional variational data assimilation (4DV AR)-like methods relying on per fect model dynamics have dif- ficulty with providing error estimates. The new method does not have these drawbacks. In fact, it combines advantages from both methods in that it does provide error estimates while automatically having balanced states after analysis, without extra computations. It is based on ensemble or Monte Carlo integrations to simulate the probability density of the model evolution. When obser vations are available, the so-called importance resampling algorithm is applied. From Bayes’ s theorem it follows that each ensemble member receives a new weight dependent on its ‘ ‘distance’ ’ t o the obser vations. Because the weights are strongly var ying, a resampling of the ensemble is necessar y. This resampling is done such that members with high weights are duplicated according to their weights, while low-weight members are largely ignored. In passing, it is noted that data assimilation is not an inverse problem by nature, although it can be for mulated that way . Also, it is shown that the posterior variance can be larger than the prior if the usual Gaussian framework is set aside. However , i n the examples presented here, the entropy of the probability densities is decreasing. The application to the ocean area around South Africa, gover ned by strongly nonlinear dynamics, shows that the method is working satisfactorily . The strong and weak points of the method are discussed and possible improvements are proposed.
Resumo:
The purpose of this study was to evaluate the influence of different light sources and photo-activation methods on degree of conversion (DC%) and polymerization shrinkage (PS) of a nanocomposite resin (Filtek (TM) Supreme XT, 3M/ESPE). Two light-curing units (LCUs), one halogen-lamp (QTH) and one light-emitting-diode (LED), and two different photo-activation methods (continuous and gradual) were investigated in this study. The specimens were divided in four groups: group 1-power density (PD) of 570 mW/cm(2) for 20 s (QTH); group 2-PD 0 at 570 mW/cm(2) for 10 s + 10 s at 570 mW/cm(2) (QTH); group 3-PD 860 mW/cm(2) for 20 s (LED), and group 4-PD 125 mW/cm(2) for 10 s + 10 s at 860 mW/cm(2) (LED). A testing machine EMIC with rectangular steel bases (6 x 1 x 2 mm) was used to record the polymerization shrinkage forces (MPa) for a period that started with the photo-activation and ended after two minutes of measurement. For each group, ten repetitions (n = 40) were performed. For DC% measurements, five specimens (n = 20) for each group were made in a metallic mold (2 mm thickness and 4 mm diameter, ISO 4049) and them pulverized, pressed with bromide potassium (KBr) and analyzed with FT-IR spectroscopy. The data of PS were analyzed by Analysis of Variance (ANOVA) with Welch`s correction and Tamhane`s test. The PS means (MPa) were: 0.60 (G1); 0.47 (G2); 0.52 (G3) and 0.45 (G4), showing significant differences between two photo-activation methods, regardless of the light source used. The continuous method provided the highest values for PS. The data of DC% were analyzed by Analysis of Variance (ANOVA) and shows significant differences for QTH LCUs, regardless of the photo-activation method used. The QTH provided the lowest values for DC%. The gradual method provides lower polymerization contraction, either with halogen lamp or LED. Degree of conversion (%) for continuous or gradual photo-activation method was influenced by the LCUs. Thus, the presented results suggest that gradual method photo-activation with LED LCU would suffice to ensure adequate degree of conversion and minimum polymerization shrinkage.
Resumo:
Background: Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods: We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results: Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion: The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.
Resumo:
A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model.
Resumo:
This study was carried out to evaluate the performance and egg quality of laying hens, in their second laying cycle submitted to different forced-molting methods and three environmental temperatures. Six hundred layers were distributed in a completely randomized experimental design with 15 treatments with five replicates of eight birds each, according to 5x3 factorial arrangement (molting methods vs. temperatures). The following forced-molting methods were applied: 90%, 70%, 50% dietary alfalfa inclusion, addition of 2,800 ppm zinc, and feed fasting. Temperatures were: 20 ºC, 27 ºC and 35 ºC. At the end of each period of the second laying cycle, bird performance and egg quality were evaluated. Data were submitted to analysis of variance and means were compared by orthogonal and polynomial contrasts. The highest alfalfa inclusion level (90% alfalfa and 10% basal diet) proved to be efficient as compared to the other methods, independently of temperature.
Genetic and environmental heterogeneity of residual variance of weight traits in Nellore beef cattle
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)