Recent developments in statistical methods for detecting genetic loci affecting phenotypic variability


Autoria(s): Rönnegård, Lars; Valdar, William
Data(s)

2012

Resumo

A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model.

Formato

application/pdf

Identificador

http://urn.kb.se/resolve?urn=urn:nbn:se:du-10527

doi:10.1186/1471-2156-13-63

PMID 22827487

ISI:000312139100001

Idioma(s)

eng

Publicador

Högskolan Dalarna, Statistik

Relação

BMC Genetics, 1471-2156, 2012, 13,

Direitos

info:eu-repo/semantics/openAccess

Tipo

Article in journal

info:eu-repo/semantics/article

text

Palavras-Chave #Mathematics #Matematik