967 resultados para physical vapor deposition
Resumo:
The growth of graphene by chemical vapor deposition on metal foils is a promising technique to deliver large-area films with high electron mobility. Nowadays, the chemical vapor deposition of hydrocarbons on copper is the most investigated synthesis method, although many other carbon precursors and metal substrates are used too. Among these, ethanol is a safe and inexpensive precursor that seems to offer favorable synthesis kinetics. We explored the growth of graphene on copper from ethanol, focusing on processes of short duration (up to one min). We investigated the produced films by electron microscopy, Raman and X-ray photoemission spectroscopy. A graphene film with high crystalline quality was found to cover the entire copper catalyst substrate in just 20 s, making ethanol appear as a more efficient carbon feedstock than methane and other commonly used precursors.
Resumo:
Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp2 carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 105 S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.
Resumo:
Abstract: We report the growth and the electron cyclotron resonance measurements of n-type Si/Si0.62Ge0.38 and Si0.94Ge0.06/Si0.62Ge0.38 modulation-doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 mu m uniform Si0.62Ge0.38 layers and 0.5 mu m compositionally graded relaxed SiGe layers from 0 to 38% Ge. The buffer layers were annealed at 800 degrees C for 1 h to obtain complete relaxation. A 75 Angstrom Si(SiGe) channel with a 100 Angstrom spacer and a 300 Angstrom 2 X 10(19) cm(-3) n-type supply layer was grown on the top of the buffer layers. The cross-sectional transmission electron microscope reveals that the dense dislocation network is confined to the buffer layer, and relatively few dislocations terminate on the surface. The plan-view image indicates the threading dislocation density is about 4 X 10(6) cm(-2). The far-infrared measurements of electron cyclotron resonance were performed at 4 K with the magnetic field of 4-8 T. The effective masses determined from the slope of the center frequency of the absorption peak versus applied magnetic field plot are 0.203m(0) and 0.193m(0) for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of a two dimensional electron gas in an Si MOSFET (0.198m(0)). The electron effective mass of Si0.94Ge0.06 is reported for the first time and is about 5% lower than that of pure Si.
Resumo:
A generalized mass transport model is developed for predicting the rate ofdeposition in chemical vapor deposition (CVD) systems. This combines thegeneralized method of obtaining equilibrium composition, with elemental fluxbalance expressions. This procedure avoids the usual problems encountered incalculating the rates in multicomponent systems, like writing overall reactionschemes. The dependence of multicomponent diffusivities on the fluxes is accountedin this model using an iterative procedure. The model developed isapplied to the deposition of titanium carbide on cemented carbide tool bitsfrom a gas mixture of titanium tetrachloride, toluene, and hydrogen. Experimentaldeposition rates were obtained using a thermogravimetric assembly.Mass transport controlled rates give an order of magnitude estimates of theobserved rates.
Resumo:
The development of novel organic polymer thin films is essential for the advancement of many emerging fields including organic electronics and biomedical coatings. In this study, the effect of synthesis conditions, namely radio frequency (rf) deposition power, on the material properties of polyterpenol thin films derived from nonsynthetic environmentally friendly monomer was investigated. At lower deposition powers, the polyterpenol films preserved more of the original monomer constituents, such as hydroxy functional groups; however, they were also softer and more hydrophilic compared to polymers fabricated at higher power. Enhanced monomer fragmentation and consequent reduction in the presence of the polar groups in the structure of the high-power samples reduced their optical band gap value from 2.95 eV for 10 W to 2.64 eV for 100 W. Regardless of deposition power, all samples were found to be optically transparent with smooth, defect-free, and homogenous surfaces.
Resumo:
The choice of ethanol (C2H5OH) as carbon source in the Chemical Vapor Deposition (CVD) of graphene on copper foils can be considered as an attractive alternative among the commonly used hydrocarbons, such as methane (CH4) [1]. Ethanol, a safe, low cost and easy handling liquid precursor, offers fast and efficient growth kinetics with the synthesis of fullyformed graphene films in just few seconds [2]. In previous studies of graphene growth from ethanol, various research groups explored temperature ranges lower than 1000 °C, usually reported for methane-assisted CVD. In particular, the 650–850 °C and 900 °C ranges were investigated, respectively for 5 and 30 min growth time [3, 4]. Recently, our group reported the growth of highly-crystalline, few-layer graphene by ethanol-CVD in hydrogen flow (1– 100 sccm) at high temperatures (1000–1070 °C) using growth times typical of CH4-assisted synthesis (10–30 min) [5]. Furthermore, a synthesis time between 20 and 60 s in the same conditions was explored too. In such fast growth we demonstrated that fully-formed graphene films can be grown by exposing copper foils to a low partial pressure of ethanol (up to 2 Pa) in just 20 s [6] and we proposed that the rapid growth is related to an increase of the Cu catalyst efficiency due weak oxidizing nature of ethanol. Thus, the employment of such liquid precursor, in small concentrations, together with a reduced time of growth and very low pressure leads to highly efficient graphene synthesis. By this way, the complete coverage of a copper catalyst surface with high spatial uniformity can be obtained in a considerably lower time than when using methane.
Resumo:
Multiwall carbon nanotubes (MWNTs) filled with Fe nanoparticles (NPs) have been synthesized by thermal chemical vapor deposition of ferrocene alone as the precursor. The MWNTs were grown at different temperatures: 980 and 800 degrees C. Characterization of as-prepared MWNTs was done by scanning and transmission electron microscopy, and X-ray diffraction. The transmission electron microscopy study revealed that Fe NPs encapsulated in MWNTs grown at 980 and 800 degrees C are spherical and rod shaped, respectively. Room-temperature vibrating sample magnetometer studies were done on the two samples up to a field of 1T. The magnetization versus magnetic field loop reveals that the saturation magnetization for the two samples varies considerably, almost by a factor of 4.6. This indicates that Fe is present in different amounts in the MWNTs grown at the two different temperatures. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
MnO/C composite coatings were grown by the metalorganic chemical vapor deposition process on ceramic alumina in argon ambient. Characterization by various techniques confirms that these coatings are homogeneous composites comprising nanometer-sized MnO particles embedded in a matrix of nanometer-sized graphite. Components of the MnO/C composite coating crystalline disordered, but are electrically quite conductive. Resistance vs. temperature measurements show that coating resistance increases exponentially from a few hundred ohms at room temperature to a few megaohms at 30 K. Logarithmic plots of reduced activation energy vs. temperature show that the coating material undergoes a metal-insulator transition. The reduced activation energy exponent for the film under zero magnetic field was 2.1, which is unusually high, implying that conduction is suppressed at much faster rate than the Mott or the Efros-Shklovskii hopping mechanism. Magnetoconductance us. magnetic field plots obtained at various temperatures show a high magnetoconductance (similar to 28.8%) at 100 K, which is unusually large for a disordered system, wherein magnetoresistance is attributed typically to weak localization. A plausible explanation for the unusual behavior observed in the carbonaceous disordered composite material is proposed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Thin films of the semiconducting, monoclinic vanadium dioxide, VO2(M) have been prepared on ordinary glass by two methods: directly by low-pressure metalorganic chemical vapor deposition (MOCVD), and by argon-annealing films of the VO2(B) phase deposited by MOCVD. The composition and microstructure of the films have been examined by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Films made predominantly of either the B or the M phase, as deposited, can only be obtained over a narrow range of deposition temperatures. At the lower end of this temperature range, the as-deposited films are strongly oriented, although the substrate is glass. This can be understood from the drive to minimize surface energy. Films of the B phase have a platelet morphology, which leads to an unusual microstructure at the lower-deposition temperatures. Those grown at similar to370 degreesC convert to the metallic, rutile (R) phase when annealed at 550 degreesC, whereas those deposited at 420 degreesC transform to the R phase only at 580 degreesC. (When cooled to room temperature, the annealed films convert reversibly from the R phase to the M phase.) Electron microscopy shows that annealing leads to disintegration of the single crystalline VO2(B) platelets into small crystallites of VO2(R), although the platelet morphology is retained. When the annealing temperature is relatively low, these crystallites are nanometer sized. At a higher-annealing temperature, the transformation leads to well-connected and similarly oriented large grains of VO2(R), enveloped in the original platelet. The semiconductor-metal transition near 68 degreesC leads to a large jump in resistivity in all the VO2(M) films, nearly as large as in epitaxial films on single-crystal substrates. When the annealed films contain well-connected large grains, the transition is very sharp. Even when preferred orientation is present, the transition is not as sharp in as-deposited VO2(M), because the crystallites are not densely packed as in annealed VO2(B). However, the high degree of orientation in these films leads to a narrow temperature hysteresis. (C) 2002 American Institute of Physics.
Resumo:
Thin films of cobalt oxide have been deposited on various substrates, such as glass, Si(100), SrTiO3(100), and LaAlO3(100), by low pressure metalorganic chemical vapor deposition (MOCVD) using cobalt(IL), acetylacetonate as the precursor. Films obtained in the temperature range 400-600 degreesC were uniform and highly crystalline having Co3O4 phase as revealed by x-ray diffraction. Under similar conditions of growth, highly oriented thin films of cobalt oxide grow on SrTiO3(100) and LaAlO3(100). The microstructure and the surface morphology of cobalt oxide films on glass, Si(100) and single crystalline substrates, SrTiO3(100) and LaAlO3(100) were studied by scanning electron microscopy. Optical properties of the films were studied by uv-visible-near IR spectrophotometry.
Resumo:
The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 450°C by low-pressure metal-organic chemical vapor deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si(100) in the temperature range 350-550°C. Under similar conditions of growth, highly oriented films of Co3O4 are formed on SrTiO3(100) and LaAlO3(100). The film on LaAlO3(100) grown at 450°C show a rocking curve FWHM of 1.61°, which reduces to 1.32° when it is annealed in oxygen at 725°C. The film on SrTiO3(100) has a FWHM of 0.330 (as deposited) and 0.29° (after annealing at 725°C). The ø-scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3(100) is comparable to the best of the pervoskite-based oxide thin films grown at significantly higher temperatures.
Resumo:
We report the far-infrared measurements of the electron cyclotron resonance absorption in n-type Si/Si0. 62Ge0.38 and Si0.94Ge0.06 /Si0. 62Ge0.38 modulation- doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 μm uniform Si0.62Ge0.38 layers and 0.5 μm compositionally graded relaxed SiGe layers from 0% Ge to 38 % Ge. The buffer layers were annealed at 800 °C for 1 hr to obtain complete relaxation. The samples had 100 Å spacers and 300 Å 2×1019 cm-3 n-type supply layers on the tops of the 75 Å channels. The far-infrared measurements of electron cyclotron resonance were performed at 4K with the magnetic field of 4 – 8 Tesla. The effective masses determined from the slope of center frequency of absorption peak vs applied magnetic field plot are 0.20 mo and 0.19 mo for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of two dimensional electron gas in Si MOSFET (0.198mo). The electron effective mass of Si0.94Ge0.06 is reported for the first time and about 5 % lower than that of pure Si.
Resumo:
Films comprised of nanowires of beta-NaxV2O5 measuring 20-200 nm in diameter and 10-30 mum in length have been prepared on glass substrates by metalorganic chemical vapor deposition using the beta-diketonate complex, vanadyl acetyl acetonate, as precursor, but without the use of either templates or catalysts. Films consisting of nanowires of monophasic beta-NaxV2O5 with a preferred orientation along (h0l) are formed only at 550 degreesC, whereas those deposited at 540 degreesC comprise a mixture of nanowires (beta-NaxV2O5) and platelets (V2O5). The films deposited at lower temperatures are less crystalline and comprise a mixture of vanadium oxide phases. From the observations that nanowires are formed only in the narrow temperature range of 540-550 degreesC, and from the critical dependence of the formation of nanowires on the balance between the CVD growth rate and the evaporation rate of the film, it is inferred that the formation of nanowires of beta-NaxV2O5 is due to chemical vapor transport.
Resumo:
Structural and electrical properties of Eu2O3 films grown on Si(100) in 500–600 °C temperature range by low pressure metalorganic chemical vapor deposition are reported. As-grown films also possess the impurity Eu1−xO phase, which has been removed upon annealing in O2 ambient. Film’s morphology comprises uniform spherical mounds (40–60 nm). Electrical properties of the films, as examined by capacitance-voltage measurements, exhibit fixed oxide charges in the range of −1.5×1011 to −6.0×1010 cm−2 and dielectric constant in the range of 8–23. Annealing has resulted in drastic improvement of their electrical properties. Effect of oxygen nonstoichiometry on the film’s property is briefly discussed.