936 resultados para pacs: data security


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose Many methodologies exist to assess the security risks associated with unauthorized leakage, modification and interruption of information used by organisations. This paper argues that these methodologies have a traditional orientation towards the identification and assessment of technical information assets. This obscures key risks associated with the cultivation and deployment of organisational knowledge. The purpose of this paper is to explore how security risk assessment methods can more effectively identify and treat the knowledge associated with business processes.

Design/methodology/approach – The argument was developed through an illustrative case study in which a well-documented traditional methodology is applied to a complex data backup process. Follow-up interviews were conducted with the organisation’s security managers to explore the results of the assessment and the nature of knowledge “assets” within a business process.

Findings – It was discovered that the backup process depended, in subtle and often informal ways, on tacit knowledge to sustain operational complexity, handle exceptions and make frequent interventions. Although typical information security methodologies identify people as critical assets, this study suggests a new approach might draw on more detailed accounts of individual knowledge, collective knowledge and their relationship to organisational processes.

Originality/value – Drawing on the knowledge management literature, the paper suggests mechanisms to incorporate these knowledge-based considerations into the scope of information security risk methodologies. A knowledge protection model is presented as a result of this research. This model outlines ways in which organisations can effectively identify and treat risks around process knowledge critical to the business.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research has shown that data security has always been an important aspect of quality of service for data service providers; but cloud computing poses new and challenging security threats. The most common security concerns for users of cloud storage are data confidentiality, integrity and availability. Microsoft has considered these concerns and responded with the Azure virtual private storage based on Searchable Encryption. Amazon has also responded to these security issues with its Amazon Web Services. In this paper, we investigate and compare in depth the features of Microsoft Azure and Amazon Web Services deemed to provide security with a particular focus on confidentiality, integrity and availability of data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trust problem in Software as a Service Cloud Computing is a broad range of a Data Owner’s concerns about the data in the Cloud. The Data Owner’s concerns about the data arise from the way the data is handled in locations and machines that are unknown to the Data Owner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Supervisory Control and Data Acquisition (SCADA) systems control and monitor industrial and critical infrastructure functions, such as electricity, gas, water, waste, railway, and traffic. Recent attacks on SCADA systems highlight the need for stronger SCADA security. Thus, sharing SCADA traffic data has become a vital requirement in SCADA systems to analyze security risks and develop appropriate security solutions. However, inappropriate sharing and usage of SCADA data could threaten the privacy of companies and prevent sharing of data. In this paper, we present a privacy preserving strategy-based permutation technique called PPFSCADA framework, in which data privacy, statistical properties and data mining utilities can be controlled at the same time. In particular, our proposed approach involves: (i) vertically partitioning the original data set to improve the performance of perturbation; (ii) developing a framework to deal with various types of network traffic data including numerical, categorical and hierarchical attributes; (iii) grouping the portioned sets into a number of clusters based on the proposed framework; and (iv) the perturbation process is accomplished by the alteration of the original attribute value by a new value (clusters centroid). The effectiveness of the proposed PPFSCADA framework is shown through several experiments on simulated SCADA, intrusion detection and network traffic data sets. Through experimental analysis, we show that PPFSCADA effectively deals with multivariate traffic attributes, producing compatible results as the original data, and also substantially improving the performance of the five supervised approaches and provides high level of privacy protection. © 2014 Published by Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transparent computing is an emerging computing paradigm where the users can enjoy any kind of service over networks on-demand with any devices, without caring about the underlying deployment details. In transparent computing, all software resources (even the OS) are stored on remote servers, from which the clients can request the resources for local execution in a block-streaming way. This paradigm has many benefits including cross-platform experience, user orientation, and platform independence. However, due to its fundamental features, e.g., separation of computation and storage in clients and servers respectively, and block-streaming-based scheduling and execution, transparent computing faces many new security challenges that may become its biggest obstacle. In this paper, we propose a Transparent Computing Security Architecture (TCSA), which builds user-controlled security for transparent computing by allowing the users to configure the desired security environments on demand. We envision, TCSA, which allows the users to take the initiative to protect their own data, is a promising solution for data security in transparent computing. © 2014 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe a tool for analysing information flow in security hardware. It identifies both sub-circuits critical to the preservation of security as well as the potential for information flow due to hardware failure. The tool allows for the composition of both logical and physical views of circuit designs. An example based on a cryptographic device is provided.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present paper is devoted to creation of cryptographic data security and realization of the packet mode in the distributed information measurement and control system that implements methods of optical spectroscopy for plasma physics research and atomic collisions. This system gives a remote access to information and instrument resources within the Intranet/Internet networks. The system provides remote access to information and hardware resources for the natural sciences within the Intranet/Internet networks. The access to physical equipment is realized through the standard interface servers (PXI, CАМАC, and GPIB), the server providing access to Ethernet devices, and the communication server, which integrates the equipment servers into a uniform information system. The system is used to make research task in optical spectroscopy, as well as to support the process of education at the Department of Physics and Engineering of Petrozavodsk State University.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mediation techniques provide interoperability and support integrated query processing among heterogeneous databases. While such techniques help data sharing among different sources, they increase the risk for data security, such as violating access control rules. Successful protection of information by an effective access control mechanism is a basic requirement for interoperation among heterogeneous data sources. ^ This dissertation first identified the challenges in the mediation system in order to achieve both interoperability and security in the interconnected and collaborative computing environment, which includes: (1) context-awareness, (2) semantic heterogeneity, and (3) multiple security policy specification. Currently few existing approaches address all three security challenges in mediation system. This dissertation provides a modeling and architectural solution to the problem of mediation security that addresses the aforementioned security challenges. A context-aware flexible authorization framework was developed in the dissertation to deal with security challenges faced by mediation system. The authorization framework consists of two major tasks, specifying security policies and enforcing security policies. Firstly, the security policy specification provides a generic and extensible method to model the security policies with respect to the challenges posed by the mediation system. The security policies in this study are specified by 5-tuples followed by a series of authorization constraints, which are identified based on the relationship of the different security components in the mediation system. Two essential features of mediation systems, i. e., relationship among authorization components and interoperability among heterogeneous data sources, are the focus of this investigation. Secondly, this dissertation supports effective access control on mediation systems while providing uniform access for heterogeneous data sources. The dynamic security constraints are handled in the authorization phase instead of the authentication phase, thus the maintenance cost of security specification can be reduced compared with related solutions. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

End users urgently request using mobile devices at their workplace. They know these devices from their private life and appreciate functionality and usability, and want to benefit from these advantages at work as well. Limitations and restrictions would not be accepted by them. On the contrary, companies are obliged to employ substantial organizational and technical measures to ensure data security and compliance when allowing to use mobile devices at the workplace. So far, only individual arrangements have been presented addressing single issues in ensuring data security and compliance. However, companies need to follow a comprehensive set of measures addressing all relevant aspects of data security and compliance in order to play it safe. Thus, in this paper at first technical architectures for using mobile devices in enterprise IT are reviewed. Thereafter a set of compliance rules is presented and, as major contribution, technical measures are explained that enable a company to integrate mobile devices into enterprise IT while still complying with these rules comprehensively. Depending on the company context, one or more of the technical architectures have to be chosen impacting the specific technical measures for compliance as elaborated in this paper. Altogether this paper, for the first time, correlates technical architectures for using mobile devices at the workplace with technical measures to assure data security and compliance according to a comprehensive set of rules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In current digital era according to (as far) massive progress and development of internet and online world technologies such as big and powerful data servers we face huge volume of information and data day by day from many different resources and services which was not available to human kind just a few decades ago. This data comes from available different online resources and services that are established to serve customers. Services and resources like Sensor Networks, Cloud Storages, Social Networks and etc., produce big volume of data and also need to manage and reuse that data or some analytical aspects of the data. Although this massive volume of data can be really useful for people and corporates it could be problematic as well. Therefore big volume of data or big data has its own deficiencies as well. They need big storage/s and this volume makes operations such as analytical operations, process operations, retrieval operations real difficult and hugely time consuming. One resolution to overcome these difficult problems is to have big data summarized so they would need less storage and extremely shorter time to get processed and retrieved. The summarized data will be then in "compact format" and still informative version of the entire data. Data summarization techniques aim then to produce a "good" quality of summaries. Therefore, they would hugely benefit everyone from ordinary users to researches and corporate world, as it can provide an efficient tool to deal with large data such as news (for new summarization).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As the acceptance and popularity of wireless networking technologies has proliferated, the security of the IEEE 802.11 wireless local area network (WLAN) has advanced in leaps and bounds. From tenuous beginnings, where the only safe way to deploy a WLAN was to assume it was hostile and employ higherlayer information security controls, to the current state of the art, all manner of improvements have been conceived and many implemented. This work investigates some of the remaining issues surrounding IEEE 802.11 WLAN operation. While the inherent issues in WLAN deployments and the problems of the original Wired Equivalent Privacy (WEP) provisions are well known and widely documented, there still exist a number of unresolved security issues. These include the security of management and control frames and the data link layer protocols themselves. This research introduces a novel proposal to enhance security at the link layer of IEEE 802.11 WLANs and then conducts detailed theoretical and empirical investigation and analysis of the eects of such proposals. This thesis �rst de�nes the state of the art in WLAN technology and deployment, including an overview of the current and emerging standards, the various threats, numerous vulnerabilities and current exploits. The IEEE 802.11i MAC security enhancements are discussed in detail, along with the likely outcomes of the IEEE 802.11 Task Group W1, looking into protected management frames. The problems of the remaining unprotected management frames, the unprotected control frames and the unprotected link layer headers are reviewed and a solution is hypothesised, to encrypt the entire MAC Protocol Data Unit (MPDU), including the MAC headers, not just the MAC Service Data Unit (MSDU) commonly performed by existing protocols. The proposal is not just to encrypt a copy of the headers while still using cleartext addresses to deliver the frame, as used by some existing protocols to support the integrity and authenticity of the headers, but to pass the entire MPDU only as ciphertext to also support the con�dentiality of the frame header information. This necessitates the decryption of every received frame using every available key before a station can determine if it is the intended recipient. As such, this raises serious concerns as to the viability of any such proposal due to the likely impact on throughput and scalability. The bulk of the research investigates the impacts of such proposals on the current WLAN protocols. Some possible variations to the proposal are also provided to enhance both utility and speed. The viability this proposal with respect to the eect on network throughput is then tested using a well known and respected network simulation tool, along with a number of analysis tools developed speci�cally for the data generated here. The simulator's operation is �rst validated against recognised test outputs, before a comprehensive set of control data is established, and then the proposal is tested and and compared against the controls. This detailed analysis of the various simulations should be of bene�t to other researchers who need to validate simulation results. The analysis of these tests indicate areas of immediate improvement and so the protocols are adjusted and a further series of experiments conducted. These �nal results are again analysed in detail and �nal appraisals provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a digital world, users’ Personally Identifiable Information (PII) is normally managed with a system called an Identity Management System (IMS). There are many types of IMSs. There are situations when two or more IMSs need to communicate with each other (such as when a service provider needs to obtain some identity information about a user from a trusted identity provider). There could be interoperability issues when communicating parties use different types of IMS. To facilitate interoperability between different IMSs, an Identity Meta System (IMetS) is normally used. An IMetS can, at least theoretically, join various types of IMSs to make them interoperable and give users the illusion that they are interacting with just one IMS. However, due to the complexity of an IMS, attempting to join various types of IMSs is a technically challenging task, let alone assessing how well an IMetS manages to integrate these IMSs. The first contribution of this thesis is the development of a generic IMS model called the Layered Identity Infrastructure Model (LIIM). Using this model, we develop a set of properties that an ideal IMetS should provide. This idealized form is then used as a benchmark to evaluate existing IMetSs. Different types of IMS provide varying levels of privacy protection support. Unfortunately, as observed by Jøsang et al (2007), there is insufficient privacy protection in many of the existing IMSs. In this thesis, we study and extend a type of privacy enhancing technology known as an Anonymous Credential System (ACS). In particular, we extend the ACS which is built on the cryptographic primitives proposed by Camenisch, Lysyanskaya, and Shoup. We call this system the Camenisch, Lysyanskaya, Shoup - Anonymous Credential System (CLS-ACS). The goal of CLS-ACS is to let users be as anonymous as possible. Unfortunately, CLS-ACS has problems, including (1) the concentration of power to a single entity - known as the Anonymity Revocation Manager (ARM) - who, if malicious, can trivially reveal a user’s PII (resulting in an illegal revocation of the user’s anonymity), and (2) poor performance due to the resource-intensive cryptographic operations required. The second and third contributions of this thesis are the proposal of two protocols that reduce the trust dependencies on the ARM during users’ anonymity revocation. Both protocols distribute trust from the ARM to a set of n referees (n > 1), resulting in a significant reduction of the probability of an anonymity revocation being performed illegally. The first protocol, called the User Centric Anonymity Revocation Protocol (UCARP), allows a user’s anonymity to be revoked in a user-centric manner (that is, the user is aware that his/her anonymity is about to be revoked). The second protocol, called the Anonymity Revocation Protocol with Re-encryption (ARPR), allows a user’s anonymity to be revoked by a service provider in an accountable manner (that is, there is a clear mechanism to determine which entity who can eventually learn - and possibly misuse - the identity of the user). The fourth contribution of this thesis is the proposal of a protocol called the Private Information Escrow bound to Multiple Conditions Protocol (PIEMCP). This protocol is designed to address the performance issue of CLS-ACS by applying the CLS-ACS in a federated single sign-on (FSSO) environment. Our analysis shows that PIEMCP can both reduce the amount of expensive modular exponentiation operations required and lower the risk of illegal revocation of users’ anonymity. Finally, the protocols proposed in this thesis are complex and need to be formally evaluated to ensure that their required security properties are satisfied. In this thesis, we use Coloured Petri nets (CPNs) and its corresponding state space analysis techniques. All of the protocols proposed in this thesis have been formally modeled and verified using these formal techniques. Therefore, the fifth contribution of this thesis is a demonstration of the applicability of CPN and its corresponding analysis techniques in modeling and verifying privacy enhancing protocols. To our knowledge, this is the first time that CPN has been comprehensively applied to model and verify privacy enhancing protocols. From our experience, we also propose several CPN modeling approaches, including complex cryptographic primitives (such as zero-knowledge proof protocol) modeling, attack parameterization, and others. The proposed approaches can be applied to other security protocols, not just privacy enhancing protocols.