997 resultados para nanoscale systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple, but important three-atom model was proposed at the solid/liquid interface, leading to a new criterion number, lambda, governing the boundary conditions (BCs) in nanoscale. The solid wall is considered as the face-centered-cubic (fcc) structure. The fluid is the liquid argon with the well-known LJ potential. Based on the concept, the two micro-systems have the same BCs if they have The same criterion number. The degree of the locking BCs is enhanced when lambda equals to 0.757. Such critical criterion number results in the substantial epitaxial ordering and one, two, or even three liquid layers are locked by the solid wall, depending on the coupling energy scale ratio of the solid and liquid atoms. With deviation from the critical criterion number, the flow approaches the slip BCs and there are little ordering structures within the liquid. Always at the same criterion number, the degree of the slip is decreased or the locking is enhanced with increasing the coupling energy scale ratio of the solid and liquid atoms. The above analysis is well confirmed by the molecular dynamics (MD) simulation. The slip length is well correlated in terms of the new criterion number. The future work is suggested to extend the present theory for other microstructures of the solid wall atoms and quasi-LJ potentials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A previous tight-binding model of power dissipation in a nanoscale conductor under an applied bias is extended to take account of the local atomic topology and the local electronic structure. The method is used to calculate the power dissipated at every atom in model nanoconductor geometries: a nanoscale constriction, a one-dimensional atomic chain between two electrodes with a resonant double barrier, and an irregular nanowire with sharp corners. The local power is compared with the local current density and the local density of states. A simple relation is found between the local power and the current density in quasiballistic geometries. A large enhancement in the power at special atoms is found in cases of resonant and anti-resonant transmission. Such systems may be expected to be particularly unstable against current-induced modifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper summarises some of the most recent work that has been done on nanoscale ferroelectrics as a result of a joint collaborative research effort involving groups in Queen's University Belfast, the University of Cambridge and the University of St. Andrews. Attempts have been made to observe fundamental effects of reduced size, and increasing morphological complexity, on ferroelectric behaviour by studying the functional response and domain characteristics in nanoscale single crystal material, whose size and morphology have been defined by Focused Ion Beam (FIB) patterning. This approach to nanoshape fabrication has allowed the following broad statements to be made: (i) in single crystal BaTiO3 sheets, permittivity and phase transition behaviour is not altered from that of bulk material down to a thickness of similar to 75 nm; (ii) in single crystal BaTiO3 sheets and nanowires changes in observed domain morphologies are consistent with large scale continuum modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of magnetoelectric, electromechanical, and photovoltaic devices based on mixed-phase rhombohedral-tetragonal (R-T) BiFeO3 (BFO) systems is possible only if the control of the engineered R phase variants is realized. Accordingly, we explore the mechanism of a bias induced phase transformation in this system. Single point spectroscopy demonstrates that the T -> R transition is activated at lower voltages compared to T -> - T polarization switching. With phase field modeling, the transition is shown to be electrically driven. We further demonstrate that symmetry of formed R-phase rosettes can be broken by a proximal probe motion, allowing controlled creation of R variants with defined orientation. This approach opens a pathway to designing next-generation magnetoelectronic and data storage devices in the nanoscale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long metallic nanowires combine crucial factors for nonconservative current-driven atomic motion. These systems have degenerate vibrational frequencies, clustered about a Kohn anomaly in the dispersion relation, that can couple under current to form nonequilibrium modes of motion growing exponentially in time. Such motion is made possible by nonconservative current-induced forces on atoms, and we refer to it generically as the waterwheel effect. Here the connection between the waterwheel effect and the stimulated directional emission of phonons propagating along the electron flow is discussed in an intuitive manner. Nonadiabatic molecular dynamics show that waterwheel modes self-regulate by reducing the current and by populating modes in nearby frequency, leading to a dynamical steady state in which nonconservative forces are counter-balanced by the electronic friction. The waterwheel effect can be described by an appropriate effective nonequilibrium dynamical response matrix. We show that the current-induced parts of this matrix in metallic systems are long-ranged, especially at low bias. This nonlocality is essential for the characterisation of nonconservative atomic dynamics under current beyond the nanoscale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronics industry is encountering thermal challenges and opportunities with lengthscales comparable to or much less than one micrometer. Examples include nanoscale phonon hotspots in transistors and the increasing temperature rise in onchip interconnects. Millimeter-scale hotspots on microprocessors, resulting from varying rates of power consumption, are being addressed using two-phase microchannel heat sinks. Nanoscale thermal data storage technology has received much attention recently. This paper provides an overview of these topics with a focus on related research at Stanford University.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Holes with different sizes from microscale to nanoscale were directly fabricated by focused ion beam (FIB) milling in this paper. Maximum aspect ratio of the fabricated holes can be 5:1 for the hole with large size with pure FIB milling, 10:1 for gas assistant etching, and 1:1 for the hole with size below 100 nm. A phenomenon of volume swell at the boundary of the hole was observed. The reason maybe due to the dose dependence of the effective sputter yield in low intensity Gaussian beam tail regions and redeposition. Different materials were used to investigate variation of the aspect ratio. The results show that for some special material, such as Ni-Be, the corresponding aspect ratio can reach 13.8:1 with Cl₂ assistant etching, but only 0.09:1 for Si(100) with single scan of the FIB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical specificity of terahertz spectroscopy, when combined with techniques for sub-wavelength sensing, is giving new understanding of processes occurring at the nanometre scale in biological systems and offers the potential for single molecule detection of chemical and biological agents and explosives. In addition, terahertz techniques are enabling the exploration of the fundamental behaviour of light when it interacts with nanoscale optical structures, and are being used to measure ultrafast carrier dynamics, transport and localisation in nanostructures. This chapter will explain how terahertz scale modelling can be used to explore the fundamental physics of nano-optics, it will discuss the terahertz spectroscopy of nanomaterials, terahertz near-field microscopy and other sub-wavelength techniques, and summarise recent developments in the terahertz spectroscopy and imaging of biological systems at the nanoscale. The potential of using these techniques for security applications will be considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soft matter deforms in response to imposed external forces. Here we demonstrate how dynamic surface forces are linked to far-field deformations. This offers a new paradigm for determining forces between soft particles in colloidal systems. The particular example we use to illustrate this concept is that of a fluid drop interacting with a solid wall through hydrodynamic drainage flow coupled with repulsive or attractive dissimilar electrical double layer interactions. The force can be deduced from a simple analysis of the drop surface geometry outside the interaction zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wavy behaviours of hysteresis energy variation in nanoscale bulk of thermomechanical austenitic NiTi shape memory alloy are reported in ultimate nanoindentation loading cycles. One sharp and two spherical tips were used while two loading-unloading rates were applied. For comparison, another austenitic copper-based shape memory alloy, CuAlNi shape memory alloy, and a metal with no phase transition, elastoplastic Cu, were investigated. In shape memory alloys, the hysteresis energy variation ultimately undergoes a linear decrease with internal wavy fluctuations and no stabilisation was observed. The internal energy fluctuation in these alloys was found dissimilar depending on the loading-unloading rate and the indentation tip geometry. In contrast, there was an absence of both overall and internal variations in hysteresis energy for Cu after the second loading cycle. The underlying physics of these variations is discussed and found to be attributed to both the created dislocations and ratcheting thermal-mechanical behaviour of the phase-transformed volume in shape memory alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer's disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood-brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The promising development in the routine nanofabrication and the increasing knowledge of the working principles of new classes of highly sensitive, label-free and possibly cost-effective bio-nanosensors for the detection of molecules in liquid environment, has rapidly increased the possibility to develop portable sensor devices that could have a great impact on many application fields, such as health-care, environment and food production, thanks to the intrinsic ability of these biosensors to detect, monitor and study events at the nanoscale. Moreover, there is a growing demand for low-cost, compact readout structures able to perform accurate preliminary tests on biosensors and/or to perform routine tests with respect to experimental conditions avoiding skilled personnel and bulky laboratory instruments. This thesis focuses on analysing, designing and testing novel implementation of bio-nanosensors in layered hybrid systems where microfluidic devices and microelectronic systems are fused in compact printed circuit board (PCB) technology. In particular the manuscript presents hybrid systems in two validating cases using nanopore and nanowire technology, demonstrating new features not covered by state of the art technologies and based on the use of two custom integrated circuits (ICs). As far as the nanopores interface system is concerned, an automatic setup has been developed for the concurrent formation of bilayer lipid membranes combined with a custom parallel readout electronic system creating a complete portable platform for nanopores or ion channels studies. On the other hand, referring to the nanowire readout hybrid interface, two systems enabling to perform parallel, real-time, complex impedance measurements based on lock-in technique, as well as impedance spectroscopy measurements have been developed. This feature enable to experimentally investigate the possibility to enrich informations on the bio-nanosensors concurrently acquiring impedance magnitude and phase thus investigating capacitive contributions of bioanalytical interactions on biosensor surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infektiöse Komplikationen im Zusammenhang mit Implantaten stellen einen Großteil aller Krankenhausinfektionen dar und treiben die Gesundheitskosten signifikant in die Höhe. Die bakterielle Kolonisation von Implantatoberflächen zieht schwerwiegende medizinische Konsequenzen nach sich, die unter Umständen tödlich verlaufen können. Trotz umfassender Forschungsaktivitäten auf dem Gebiet der antibakteriellen Oberflächenbeschichtungen ist das Spektrum an wirksamen Substanzen aufgrund der Anpassungsfähigkeit und Ausbildung von Resistenzen verschiedener Mikroorganismen eingeschränkt. Die Erforschung und Entwicklung neuer antibakterieller Materialien ist daher von fundamentaler Bedeutung.rnIn der vorliegenden Arbeit wurden auf der Basis von Polymernanopartikeln und anorganischen/polymeren Verbundmaterialien verschiedene Systeme als Alternative zu bestehenden antibakteriellen Oberflächenbeschichtungen entwickelt. Polymerpartikel finden Anwendung in vielen verschiedenen Bereichen, da sowohl Größe als auch Zusammensetzung und Morphologie vielseitig gestaltet werden können. Mit Hilfe der Miniemulsionstechnik lassen sich u. A. funktionelle Polymernanopartikel im Größenbereich von 50-500 nm herstellen. Diese wurde im ersten System angewendet, um PEGylierte Poly(styrol)nanopartikel zu synthetisieren, deren anti-adhesives Potential in Bezug auf P. aeruginosa evaluiert wurde. Im zweiten System wurden sog. kontakt-aktive kolloide Dispersionen entwickelt, welche bakteriostatische Eigenschaften gegenüber S. aureus zeigten. In Analogie zum ersten System, wurden Poly(styrol)nanopartikel in Copolymerisation in Miniemulsion mit quaternären Ammoniumgruppen funktionalisiert. Als Costabilisator diente das zuvor quaternisierte, oberflächenaktive Monomer (2-Dimethylamino)ethylmethacrylat (qDMAEMA). Die Optimierung der antibakteriellen Eigenschaften wurde im nachfolgenden System realisiert. Hierbei wurde das oberflächenaktive Monomer qDMAEMA zu einem oberflächenaktiven Polyelektrolyt polymerisiert, welcher unter Anwendung von kombinierter Miniemulsions- und Lösemittelverdampfungstechnik, in entsprechende Polyelektrolytnanopartikel umgesetzt wurde. Infolge seiner oberflächenaktiven Eigenschaften, ließen sich aus dem Polyelektrolyt stabile Partikeldispersionen ohne Zusatz weiterer Tenside ausbilden. Die selektive Toxizität der Polyelektrolytnanopartikel gegenüber S. aureus im Unterschied zu Körperzellen, untermauert ihr vielversprechendes Potential als bakterizides, kontakt-aktives Reagenz. rnAufgrund ihrer antibakteriellen Eigenschaften wurden ZnO Nanopartikel ausgewählt und in verschiedene Freisetzungssysteme integriert. Hochdefinierte eckige ZnO Nanokristalle mit einem mittleren Durchmesser von 23 nm wurden durch thermische Zersetzung des Precursormaterials synthetisiert. Durch die nachfolgende Einkapselung in Poly(L-laktid) Latexpartikel wurden neue, antibakterielle und UV-responsive Hybridnanopartikel entwickelt. Durch die photokatalytische Aktivierung von ZnO mittels UV-Strahlung wurde der Abbau der ZnO/PLLA Hybridnanopartikel signifikant von mehreren Monaten auf mehrere Wochen verkürzt. Die Photoaktivierung von ZnO eröffnet somit die Möglichkeit einer gesteuerten Freisetzung von ZnO. Im nachfolgenden System wurden dünne Verbundfilme aus Poly(N-isopropylacrylamid)-Hydrogelschichten mit eingebetteten ZnO Nanopartikeln hergestellt, die als bakterizide Oberflächenbeschichtungen gegen E. coli zum Einsatz kamen. Mit minimalem Gehalt an ZnO zeigten die Filme eine vergleichbare antibakterielle Aktivität zu Silber-basierten Beschichtungen. Hierbei lässt sich der Gehalt an ZnO relativ einfach über die Filmdicke einstellen. Weiterhin erwiesen sich die Filme mit bakteriziden Konzentrationen an ZnO als nichtzytotoxisch gegenüber Körperzellen. Zusammenfassend wurden mehrere vielversprechende antibakterielle Prototypen entwickelt, die als potentielle Implantatbeschichtungen auf die jeweilige Anwendung weiterhin zugeschnitten und optimiert werden können.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomolecular interactions, including protein-protein, protein-DNA, and protein-ligand interactions, are of special importance in all biological systems. These interactions may occer during the loading of biomolecules to interfaces, the translocation of biomolecules through transmembrane protein pores, and the movement of biomolecules in a crowded intracellular environment. The molecular interaction of a protein with its binding partners is crucial in fundamental biological processes such as electron transfer, intracellular signal transmission and regulation, neuroprotective mechanisms, and regulation of DNA topology. In this dissertation, a customized surface plasmon resonance (SPR) has been optimized and new theoretical and label free experimental methods with related analytical calculations have been developed for the analysis of biomolecular interactions. Human neuroglobin (hNgb) and cytochrome c from equine heart (Cyt c) proteins have been used to optimize the customized SPR instrument. The obtained Kd value (~13 µM), from SPR results, for Cyt c-hNgb molecular interactions is in general agreement with a previously published result. The SPR results also confirmed no significant impact of the internal disulfide bridge between Cys 46 and Cys 55 on hNgb binding to Cyt c. Using SPR, E. coli topoisomerase I enzyme turnover during plasmid DNA relaxation was found to be enhanced in the presence of Mg2+. In addition, a new theoretical approach of analyzing biphasic SPR data has been introduced based on analytical solutions of the biphasic rate equations. In order to develop a new label free method to quantitatively study protein-protein interactions, quartz nanopipettes were chemically modified. The derived Kd (~20 µM) value for the Cyt c-hNgb complex formations matched very well with SPR measurements (Kd ~16 µM). The finite element numerical simulation results were similar to the nanopipette experimental results. These results demonstrate that nanopipettes can potentially be used as a new class of a label-free analytical method to quantitatively characterize protein-protein interactions in attoliter sensing volumes, based on a charge sensing mechanism. Moreover, the molecule-based selective nature of hydrophobic and nanometer sized carbon nanotube (CNT) pores was observed. This result might be helpful to understand the selective nature of cellular transport through transmembrane protein pores.