846 resultados para motor imagery


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dance is a rich source of material for researchers interested in the integration of movement and cognition. The multiple aspects of embodied cognition involved in performing and perceiving dance have inspired scientists to use dance as a means for studying motor control, expertise, and action-perception links. The aim of this review is to present basic research on cognitive and neural processes implicated in the execution, expression, and observation of dance, and to bring into relief contemporary issues and open research questions. The review addresses six topics: 1) dancers’ exemplary motor control, in terms of postural control, equilibrium maintenance, and stabilization; 2) how dancers’ timing and on-line synchronization are influenced by attention demands and motor experience; 3) the critical roles played by sequence learning and memory; 4) how dancers make strategic use of visual and motor imagery; 5) the insights into the neural coupling between action and perception yielded through exploration of the brain architecture mediating dance observation; and 6) a neuroaesthetics perspective that sheds new light on the way audiences perceive and evaluate dance expression. Current and emerging issues are presented regarding future directions that will facilitate the ongoing dialogue between science and dance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BARBOSA, André F. ; SOUZA, Bryan C. ; PEREIRA JUNIOR, Antônio ; MEDEIROS, Adelardo A. D.de, . Implementação de Classificador de Tarefas Mentais Baseado em EEG. In: CONGRESSO BRASILEIRO DE REDES NEURAIS, 9., 2009, Ouro Preto, MG. Anais... Ouro Preto, MG, 2009

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several lines of evidence converge to the idea that rapid eye movement sleep (REMS) is a good model to foster our understanding of psychosis. Both REMS and psychosis course with internally generated perceptions and lack of rational judgment, which is attributed to a hyperlimbic activity along with hypofrontality. Interestingly, some individuals can become aware of dreaming during REMS, a particular experience known as lucid dreaming (LD), whose neurobiological basis is still controversial. Since the frontal lobe plays a role in self-consciousness, working memory and attention, here we hypothesize that LD is associated with increased frontal activity during REMS. A possible way to test this hypothesis is to check whether transcranial magnetic or electric stimulation of the frontal region during REMS triggers LD. We further suggest that psychosis and LD are opposite phenomena: LD as a physiological awakening while dreaming due to frontal activity, and psychosis as a pathological intrusion of dream features during wake state due to hypofrontality. We further suggest that LD research may have three main clinical implications. First, LD could be important to the study of consciousness, including its pathologies and other altered states. Second, LD could be used as a therapy for recurrent nightmares, a common symptom of depression and post-traumatic stress disorder. Finally, LD may allow for motor imagery during dreaming with possible improvement of physical rehabilitation. In all, we believe that LD research may clarify multiple aspects of brain functioning in its physiological, altered and pathological states.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stroke is the leading cause of combined motor and cognitive disability worldwide. The rehabilitation of stroke patients is mostly directed towards motor recovery through the training of the affected member under supervision of a Physical Therapist. In the present study we introduce a new approach for both cognitive and motor therapy, which relies on motor imagery of the upper limbs and working memory training. This therapy should be utilized as an adjuvant to physical therapy. Ten individuals (5 men and 5 women) were selected for the pilot study, all of them in the acute phase of the first ischemic stroke episode. The control group had 5 individuals who were submitted to physical therapy only, whilst the other 5 patients in the experimental group also performed the cognitive and motor training with a video game specially built for this study. Two patients left the experimental group before the end. Total training lasted for 9 weeks, 2 times a week, for half an hour. Patients reported they enjoyed playing the game, even though it required a lot of mental effort, according to them. Plus, they considered it had a beneficial influence in their activities of daily living. No side effects were reported. Preliminary results suggest there is a difference between groups in cognitive and upper limb motor evaluation following the intervention. It is important to notice that our conclusions are limited due the small sample number. Overall, this work is supported by other studies in literature focused in rehabilitation with motor imagery and working memory and indicate a continuity of the research, increasing total training hours

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJETIVOS: Assim como a imagética motora, o reconhecimento de partes do corpo aciona representações somatosensoriais específicas. Essas representações são ativadas implicitamente para comparar o corpo com o estímulo. No presente estudo, investigou-se a influência da informação proprioceptiva da postura no reconhecimento de partes do corpo (mãos) e propõe-se a utilização dessa tarefa na reabilitação de pacientes neurológicos. MATERIAIS E MÉTODOS: Dez voluntários destros participaram do experimento. A tarefa era reconhecer a lateralidade de figuras da mão apresentada, em várias perspectivas e em vários ângulos de orientação. Para a figura da mão direita, o voluntário pressionava a tecla direita e para a figura da mão esquerda, a tecla esquerda. Os voluntários realizavam duas sessões: uma com as mãos na postura prona e outra com as mãos na postura supina. RESULTADOS: Os tempos de reação manual (TRM) eram maiores para as vistas e orientações, nas quais é difícil realizar o movimento real, mostrando que durante a tarefa, existe um acionamento de representações motoras para comparar o corpo com o estímulo. Além disso, existe uma influência da postura do sujeito em vistas e ângulos específicos. CONCLUSÕES: Estes resultados mostram que representações motoras são ativadas para comparar o corpo com o estímulo e que a postura da mão influencia esta ressonância entre estímulo e parte do corpo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Motor imagery, passive movement, and movement observation have been suggested to activate the sensorimotor system without overt movement. The present study investigated these three covert movement modes together with overt movement in a within-subject design to allow for a fine-grained comparison of their abilities in activating the sensorimotor system, i.e. premotor, primary motor, and somatosensory cortices. For this, 21 healthy volunteers underwent functional magnetic resonance imaging (fMRI). In addition we explored the abilities of the different covert movement modes in activating the sensorimotor system in a pilot study of 5 stroke patients suffering from chronic severe hemiparesis. Results demonstrated that while all covert movement modes activated sensorimotor areas, there were profound differences between modes and between healthy volunteers and patients. In healthy volunteers, the pattern of neural activation in overt execution was best resembled by passive movement, followed by motor imagery, and lastly by movement observation. In patients, attempted overt execution was best resembled by motor imagery, followed by passive movement and lastly by movement observation. Our results indicate that for severely hemiparetic stroke patients motor imagery may be the preferred way to activate the sensorimotor system without overt behavior. In addition, the clear differences between the covert movement modes point to the need for within-subject comparisons. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first part of my thesis presents an overview of the different approaches used in the past two decades in the attempt to forecast epileptic seizure on the basis of intracranial and scalp EEG. Past research could reveal some value of linear and nonlinear algorithms to detect EEG features changing over different phases of the epileptic cycle. However, their exact value for seizure prediction, in terms of sensitivity and specificity, is still discussed and has to be evaluated. In particular, the monitored EEG features may fluctuate with the vigilance state and lead to false alarms. Recently, such a dependency on vigilance states has been reported for some seizure prediction methods, suggesting a reduced reliability. An additional factor limiting application and validation of most seizure-prediction techniques is their computational load. For the first time, the reliability of permutation entropy [PE] was verified in seizure prediction on scalp EEG data, contemporarily controlling for its dependency on different vigilance states. PE was recently introduced as an extremely fast and robust complexity measure for chaotic time series and thus suitable for online application even in portable systems. The capability of PE to distinguish between preictal and interictal state has been demonstrated using Receiver Operating Characteristics (ROC) analysis. Correlation analysis was used to assess dependency of PE on vigilance states. Scalp EEG-Data from two right temporal epileptic lobe (RTLE) patients and from one patient with right frontal lobe epilepsy were analysed. The last patient was included only in the correlation analysis, since no datasets including seizures have been available for him. The ROC analysis showed a good separability of interictal and preictal phases for both RTLE patients, suggesting that PE could be sensitive to EEG modifications, not visible on visual inspection, that might occur well in advance respect to the EEG and clinical onset of seizures. However, the simultaneous assessment of the changes in vigilance showed that: a) all seizures occurred in association with the transition of vigilance states; b) PE was sensitive in detecting different vigilance states, independently of seizure occurrences. Due to the limitations of the datasets, these results cannot rule out the capability of PE to detect preictal states. However, the good separability between pre- and interictal phases might depend exclusively on the coincidence of epileptic seizure onset with a transition from a state of low vigilance to a state of increased vigilance. The finding of a dependency of PE on vigilance state is an original finding, not reported in literature, and suggesting the possibility to classify vigilance states by means of PE in an authomatic and objectic way. The second part of my thesis provides the description of a novel behavioral task based on motor imagery skills, firstly introduced (Bruzzo et al. 2007), in order to study mental simulation of biological and non-biological movement in paranoid schizophrenics (PS). Immediately after the presentation of a real movement, participants had to imagine or re-enact the very same movement. By key release and key press respectively, participants had to indicate when they started and ended the mental simulation or the re-enactment, making it feasible to measure the duration of the simulated or re-enacted movements. The proportional error between duration of the re-enacted/simulated movement and the template movement were compared between different conditions, as well as between PS and healthy subjects. Results revealed a double dissociation between the mechanisms of mental simulation involved in biological and non-biologial movement simulation. While for PS were found large errors for simulation of biological movements, while being more acurate than healthy subjects during simulation of non-biological movements. Healthy subjects showed the opposite relationship, making errors during simulation of non-biological movements, but being most accurate during simulation of non-biological movements. However, the good timing precision during re-enactment of the movements in all conditions and in both groups of participants suggests that perception, memory and attention, as well as motor control processes were not affected. Based upon a long history of literature reporting the existence of psychotic episodes in epileptic patients, a longitudinal study, using a slightly modified behavioral paradigm, was carried out with two RTLE patients, one patient with idiopathic generalized epilepsy and one patient with extratemporal lobe epilepsy. Results provide strong evidence for a possibility to predict upcoming seizures in RTLE patients behaviorally. In the last part of the thesis it has been validated a behavioural strategy based on neurobiofeedback training, to voluntarily control seizures and to reduce there frequency. Three epileptic patients were included in this study. The biofeedback was based on monitoring of slow cortical potentials (SCPs) extracted online from scalp EEG. Patients were trained to produce positive shifts of SCPs. After a training phase patients were monitored for 6 months in order to validate the ability of the learned strategy to reduce seizure frequency. Two of the three refractory epileptic patients recruited for this study showed improvements in self-management and reduction of ictal episodes, even six months after the last training session.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The treatment of neuropathic pain challenges not only doctors but also hand therapists, since a majority of patients don't experience a significant pain relief despite systemic pain treatment. Early diagnosis of neuropathic pain and a therapeutic concept is crucial to meet the individual needs of the patient. The complexity of a pain syndrome calls for a multidisciplinary approach using patient education, pharmacological and non-pharmacological therapies, such as graded motor imagery or somatosensory rehabilitation, behavioral therapy and physical measures. The evidence of the above mentioned therapies with regards to neuropathic pain is not yet completely established. Possible reasons are the lack of complete understanding of the pain causing mechanisms and the fact of treating the symptoms rather than the cause.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Response inhibition is the ability to suppress inadequate but automatically activated, prepotent or ongoing response tendencies. In the framework of motor inhibition, two distinct operating strategies have been described: “proactive” and “reactive” control modes. In the proactive modality, inhibition is recruited in advance by predictive signals, and actively maintained before its enactment. Conversely, in the reactive control mode, inhibition is phasically enacted after the detection of the inhibitory signal. To date, ample evidence points to a core cerebral network for reactive inhibition comprising the right inferior frontal gyrus (rIFG), the presupplementary motor area (pre-SMA) and the basal ganglia (BG). Moreover, fMRI studies showed that cerebral activations during proactive and reactive inhibition largely overlap. These findings suggest that at least part of the neural network for reactive inhibition is recruited in advance, priming cortical regions in preparation for the upcoming inhibition. So far, proactive and reactive inhibitory mechanisms have been investigated during tasks in which the requested response to be stopped or withheld was an “overt” action execution (AE) (i.e., a movement effectively performed). Nevertheless, inhibitory mechanisms are also relevant for motor control during “covert actions” (i.e., potential motor acts not overtly performed), such as motor imagery (MI). MI is the conscious, voluntary mental rehearsal of action representations without any overt movement. Previous studies revealed a substantial overlap of activated motor-related brain networks in premotor, parietal and subcortical regions during overtly executed and imagined movements. Notwithstanding this evidence for a shared set of cerebral regions involved in encoding actions, whether or not those actions are effectively executed, the neural bases of motor inhibition during MI, preventing covert action from being overtly performed, in spite of the activation of the motor system, remain to be fully clarified. Taking into account this background, we performed a high density EEG study evaluating cerebral mechanisms and their related sources elicited during two types of cued Go/NoGo task, requiring the execution or withholding of an overt (Go) or a covert (MI) action, respectively. The EEG analyses were performed in two steps, with different aims: 1) Analysis of the “response phase” of the cued overt and covert Go/NoGo tasks, for the evaluation of reactive inhibitory control of overt and covert actions. 2) Analysis of the “preparatory phase” of the cued overt and covert Go/NoGo EEG datasets, focusing on cerebral activities time-locked to the preparatory signals, for the evaluation of proactive inhibitory mechanisms and their related neural sources. For these purposes, a spatiotemporal analysis of the scalp electric fields was applied on the EEG data recorded during the overt and covert Go/NoGo tasks. The spatiotemporal approach provide an objective definition of time windows for source analysis, relying on the statistical proof that the electric fields are different and thus generated by different neural sources. The analysis of the “response phase” revealed that key nodes of the inhibitory circuit, underpinning inhibition of the overt movement during the NoGo response, were also activated during the MI enactment. In both cases, inhibition relied on the activation of pre-SMA and rIFG, but with different temporal patterns of activation in accord with the intended “covert” or “overt” modality of motor performance. During the NoGo condition, the pre-SMA and rIFG were sequentially activated, pointing to an early decisional role of pre-SMA and to a later role of rIFG in the enactment of inhibitory control of the overt action. Conversely, a concomitant activation of pre-SMA and rIFG emerged during the imagined motor response. This latter finding suggested that an inhibitory mechanism (likely underpinned by the rIFG), could be prewired into a prepared “covert modality” of motor response, as an intrinsic component of the MI enactment. This mechanism would allow the rehearsal of the imagined motor representations, without any overt movement. The analyses of the “preparatory phase”, confirmed in both overt and covert Go/NoGo tasks the priming of cerebral regions pertaining to putative inhibitory network, reactively triggered in the following response phase. Nonetheless, differences in the preparatory strategies between the two tasks emerged, depending on the intended “overt” or “covert” modality of the possible incoming motor response. During the preparation of the overt Go/NoGo task, the cue primed the possible overt response programs in motor and premotor cortex. At the same time, through preactivation of a pre-SMA-related decisional mechanism, it triggered a parallel preparation for the successful response selection and/or inhibition during the subsequent response phase. Conversely, the preparatory strategy for the covert Go/NoGo task was centred on the goal-oriented priming of an inhibitory mechanism related to the rIFG that, being tuned to the instructed covert modality of the motor performance and instantiated during the subsequent MI enactment, allowed the imagined response to remain a potential motor act. Taken together, the results of the present study demonstrate a substantial overlap of cerebral networks activated during proactive recruitment and subsequent reactive enactment of motor inhibition in both overt and covert actions. At the same time, our data show that preparatory cues predisposed ab initio a different organization of the cerebral areas (in particular of the pre-SMA and rIFG) involved with sensorimotor transformations and motor inhibitory control for executed and imagined actions. During the preparatory phases of our cued overt and covert Go/NoGo tasks, the different adopted strategies were tuned to the “how” of the motor performance, reflecting the intended overt and covert modality of the possible incoming action.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-05

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stroke is nowadays one of the main causes of death in Brazil and worldwide. During the rehabilitation process, patients undergo physioterapic exercises based on repetition, which may cause them to feel little progress is being made. Focusing on themes from the areas of Human-Computer Interaction and Motor Imagery, the present work describes the development of a digital game concept aimed at motor rehabilitation to the neural rehabilitation of patients who have suffered a stroke in a playful and engaging way. The research hypothesizes that an interactive digital game based on Motor Imagery contributes to patients' raised commitment in the stroke sequel rehabilitation process. The research process entailed the investigation of 10 subjects who live with sequels caused by stroke - it was further established that subjects were over 60 years old. Using as foundation an initial survey regarding target-users' specificities, where an investigation on subjectrelated aspects was carried out through Focus Group (n=9) and Contextual Analysis (n=3), having as subjects elderly individuals, a list with the necessary requirements for the conceptualization of a digital game was fleshed out. The initial survey also enabled the establishment of preliminary interactions for the formulation of game prototypes. At first, low-resolution prototypes were used, with two distinct interaction models for the game - one with a direct approach to the Motor Imagery concept, and another using a narrative with characters and scene settings. The goal was to verify participants' receptivity regarding the addition of playful activities into game dynamics. Prototypes were analyzed while being used by five patients, through the Cooperative Evaluation technique. The tests indicated a preference for option with elements in a playful narrative. Based on these results high fidelity prototypes were created, where concepts close to the game's final version were elaborated. The High Fidelity prototype was also evaluated with four patients through the Cooperative Evaluation technique. It was concluded that elderly individuals and patients were receptive to the idea of a digital game for the rehabilitation from sequels caused by stroke; that, for the success of devices aimed at these cohorts, their contexts, needs and expectations must be respected above all; and that user-centered design is an essential approach in that regard.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

I sistemi BCI EEG-based sono un mezzo di comunicazione diretto tra il cervello e un dispositivo esterno il quale riceve comandi direttamente da segnali derivanti dall'attività elettrica cerebrale. Le features più utilizzate per controllare questi dispositivi sono i ritmi sensorimotori, ossia i ritmi mu e beta (8-30 Hz). Questi ritmi hanno la particolare proprietà di essere modulati durante l'immaginazione di un movimento generando così delle desincronizzazioni e delle sincronizzazioni evento correlate, ERD e ERS rispettavamente. Tuttavia i destinatari di tali sistemi BCI sono pazienti con delle compromissioni corticali e non sono sempre in grado di generare dei pattern ERD/ERS stabili. Per questo motivo, negli ultimi anni, è stato proposto l'uso di tecniche di stimolazione cerebrale non invasiva, come la tDCS, da abbinare al training BCI. In questo lavoro ci si è focalizzati sugli effetti della tDCS sugli ERD ed ERS neuronali indotti da immaginazione motoria attraverso un'analisi dei contributi presenti in letteratura. In particolare, sono stati analizzati due aspetti, ossia: i) lo studio delle modificazioni di ERD ed ERS durante (online) o in seguito (offline) a tDCS e ii) eventuali cambiamenti in termini di performance/controllo del sistema BCI da parte del soggetto sottoposto alla seduta di training e tDCS. Le ricerche effettuate tramite studi offline o online o con entrambe le modalità, hanno portato a risultati contrastanti e nuovi studi sarebbero necessari per chiarire meglio i meccanismi cerebrali che sottendono alla modulazione di ERD ed ERS indotta dalla tDCS. Si è infine provato ad ipotizzare un protocollo sperimentale per chiarire alcuni di questi aspetti.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BARBOSA, André F. ; SOUZA, Bryan C. ; PEREIRA JUNIOR, Antônio ; MEDEIROS, Adelardo A. D.de, . Implementação de Classificador de Tarefas Mentais Baseado em EEG. In: CONGRESSO BRASILEIRO DE REDES NEURAIS, 9., 2009, Ouro Preto, MG. Anais... Ouro Preto, MG, 2009