1000 resultados para human MTDNA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aging is characterized by a chronic, low-grade inflammatory state called “inflammaging”. Mitochondria are the main source of reactive oxygen species (ROS), which trigger the production of pro-inflammatory molecules. We are interested in studying the age-related modifications of the mitochondrial DNA (mtDNA), which can be affected by the lifelong exposure to ROS and are responsible of mitochondrial dysfunction. Moreover, increasing evidences show that telomere shortening, naturally occurring with aging, is involved in mtDNA damage processes and thus in the pathogenesis of age-related disorders. Thus the primary aim of this thesis was the analysis of mtDNA copy number, deletion level and integrity in different-age human biopsies from liver, vastus lateralis skeletal muscle of healthy subjects and patients with limited mobility of lower limbs (LMLL), as well as adipose tissue. The telomere length and the expression of nuclear genes related to mitobiogenesis, fusion and fission, mitophagy, mitochondrial protein quality control system, hypoxia, production and protection from ROS were also evaluated. In liver the decrease in mtDNA integrity with age is accompanied with an increase in mtDNA copy number, suggesting the existence of a “compensatory mechanism” able to maintain the functionality of this organ. Different is the case of vastus lateralis muscle, where any “compensatory pathway” is activated and mtDNA integrity and copy number decrease with age, both in healthy subjects and in patients. Interestingly, mtDNA rearrangements do not incur in adipose tissue with advancing age. Finally, in all tissues a marked gender difference appears, suggesting that aging and also gender diversely affect mtDNA rearrangements and telomere length in the three human tissues considered, likely depending on their different metabolic needs and inflammatory status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An appropriate model of recent human evolution is not only important to understand our own history, but it is necessary to disentangle the effects of demography and selection on genome diversity. Although most genetic data support the view that our species originated recently in Africa, it is still unclear if it completely replaced former members of the Homo genus, or if some interbreeding occurred during its range expansion. Several scenarios of modern human evolution have been proposed on the basis of molecular and paleontological data, but their likelihood has never been statistically assessed. Using DNA data from 50 nuclear loci sequenced in African, Asian and Native American samples, we show here by extensive simulations that a simple African replacement model with exponential growth has a higher probability (78%) as compared with alternative multiregional evolution or assimilation scenarios. A Bayesian analysis of the data under this best supported model points to an origin of our species approximately 141 thousand years ago (Kya), an exit out-of-Africa approximately 51 Kya, and a recent colonization of the Americas approximately 10.5 Kya. We also find that the African replacement model explains not only the shallow ancestry of mtDNA or Y-chromosomes but also the occurrence of deep lineages at some autosomal loci, which has been formerly interpreted as a sign of interbreeding with Homo erectus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine whether pathogenic mutations in mtDNA are involved in phenotypic expression of Alzheimer’s disease (AD), the transfer of mtDNA from elderly patients with AD into mtDNA-less (ρ0) HeLa cells was carried out by fusion of platelets or synaptosomal fractions of autopsied brain tissues with ρ0 HeLa cells. The results showed that mtDNA in postmortem brain tissue survives for a long time without degradation and could be rescued in ρ0 HeLa cells. Next, the cybrid clones repopulated with exogenously imported mtDNA from patients with AD were used for examination of respiratory enzyme activity and transfer of mtDNA with the pathogenic mutations that induce mitochondrial dysfunction. The presence of the mutated mtDNA was restricted to brain tissues and their cybrid clones that formed with synaptosomes as mtDNA donors, whereas no cybrid clones that isolated with platelets as mtDNA donors had detectable mutated mtDNA. However, biochemical analyses showed that all cybrid clones with mtDNA imported from platelets or brain tissues of patients with AD restored mitochondrial respiration activity to almost the same levels as those of cybrid clones with mtDNA from age-matched normal controls, suggesting functional integrity of mtDNA in both platelets and brain tissues of elderly patients with AD. These observations warrant the reassessment of the conventional concept that the accumulation of pathogenic mutations in mtDNA throughout the aging process is responsible for the decrease of mitochondrial respiration capacity with age and with the development of age-associated neurodegenerative diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms that underlie the maintenance of and increase in mutant mitochondrial DNA (mtDNA) are central to our understanding of mitochondrial disease. We have therefore developed a technique based on saponin permeabilisation that allows the study of mtDNA synthesis in intact cells. Permeabilisation of cells has been extensively used in an established method both for studying transcription and DNA replication in the nucleus and for measuring respiratory chain activities in mitochondria. We have quantitatively studied incorporation of radiolabelled DNA precursors into mtDNA in human cell lines derived from controls and from patients with mitochondrial DNA disease. Total cell DNA is extracted, restriction digested and Southern blotted, newly synthesised mtDNA being proportional to the label incorporated in each restriction band. A rate of synthesis can then be derived by estimating the relative steady-state mtDNA after probing with full-length mtDNA. Where co-existing mutant and wild-type mtDNA (heteroplasmy) can be distinguished using restriction digestion, their rates of synthesis can be compared within a single cell line. This will be particularly useful in elucidating the pathophysiology of mtDNA diseases in which the distribution of mutant and wild-type mtDNA in cell lines in patient tissues may evolve with time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed the level of intraindividual sequence variability (heteroplasmy) of mtDNA in human brain by denaturing gradient gel electrophoresis and sequencing. Single base substitutions, as well as insertions or deletions of single bases, were numerous in the noncoding control region (D-loop), and 35-45% of the molecules from a single tissue showed sequence differences. By contrast, heteroplasmy in coding regions was not detected. The lower level of heteroplasmy in the coding regions is indicative of selection against deleterious mutations. Similar levels of heteroplasmy were found in two brain regions from the same individual, while no heteroplasmy was detected in blood. Thus, heteroplasmy seems to be more frequent in nonmitotic tissues. We observed a 7.7-fold increase in the frequency of deletions/insertions and a 2.2-fold increase in the overall frequency of heteroplasmic mutations in two individuals aged 96 and 99, relative to an individual aged 28. Our results show that intraindividual sequence variability occurs at a high frequency in the noncoding regions of normal human brain and indicate that small insertions and deletions might accumulate with age at a lower rate than large rearrangements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’atrofia ottica dominante (ADOA) è una malattia mitocondriale caratterizzata da difetti visivi, che si manifestano durante l’infanzia, causati da progressiva degenerazione delle cellule gangliari della retina (RGC). ADOA è una malattia genetica associata, nella maggior parte dei casi, a mutazioni nel gene OPA1 che codifica per la GTPasi mitocondriale OPA1, appartenente alla famiglia delle dinamine, principalmente coinvolta nel processo di fusione mitocondriale e nel mantenimento del mtDNA. Finora sono state identificate più di 300 mutazioni patologiche nel gene OPA1. Circa il 50% di queste sono mutazioni missenso, localizzate nel dominio GTPasico, che si pensa agiscano come dominanti negative. Questa classe di mutazioni è associata ad una sindrome più grave nota come “ADOA-plus”. Nel lievito Saccharomyces cerevisiae MGM1 è l’ortologo del gene OPA1: nonostante i due geni abbiano domini funzionali identici le sequenze amminoacidiche sono scarsamente conservate. Questo costituisce una limitazione all’uso del lievito per lo studio e la validazione di mutazioni patologiche nel gene OPA1, infatti solo poche sostituzioni possono essere introdotte e studiate nelle corrispettive posizioni del gene di lievito. Per superare questo ostacolo è stato pertanto costruito un nuovo modello di S. cerevisiae, contenente il gene chimerico MGM1/OPA1, in grado di complementare i difetti OXPHOS del mutante mgm1Δ. Questo gene di fusione contiene una larga parte di sequenza corrispondente al gene OPA1, nella quale è stato inserito un set di nuove mutazioni trovate in pazienti affetti da ADOA e ADOA-plus. La patogenicità di queste mutazioni è stata validata sia caratterizzando i difetti fenotipici associati agli alleli mutati, sia la loro dominanza/recessività nel modello di lievito. A tutt’oggi non è stato identificato alcun trattamento farmacologico per la cura di ADOA e ADOA-plus. Per questa ragione abbiamo utilizzato il nostro modello di lievito per la ricerca di molecole che agiscono come soppressori chimici, ossia composti in grado di ripristinare i difetti fenotipici indotti da mutazioni nel gene OPA1. Attraverso uno screening fenotipico high throughput sono state testate due differenti librerie di composti chimici. Questo approccio, noto con il nome di drug discovery, ha permesso l’identificazione di 23 potenziali molecole attive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To chronicle demographic movement across African Asian corridors, a variety of molecular (sequence analysis, restriction mapping and denaturing high performance liquid chromatography etc.) and statistical (correspondence analysis, AMOVA, calculation of diversity indices and phylogenetic inference, etc.) techniques were employed to assess the phylogeographic patterns of mtDNA control region and Y chromosomal variation among 14 sub-Saharan, North African and Middle Eastern populations. The patterns of genetic diversity revealed evidence of multiple migrations across several African Asian passageways as well within the African continent itself. The two-part analysis uncovered several interesting results which include the following: (1) a north (Egypt and Middle East Asia) to south (sub-Saharan Africa) partitioning of both mtDNA and Y chromosomal haplogroup diversity, (2) a genetic diversity gradient in sub-Saharan Africa from east to west, (3) evidence in favor of the Levantine Corridor over the Horn of Africa as the major genetic conduit since the Last Glacial Maximum, (4) a substantially higher mtDNA versus Y chromosomal sub-Saharan component in the Middle East collections, (5) a higher representation of East versus West African mtDNA haplotypes in the Arabian Peninsula populations versus no such bias in the Levant groups and lastly, (6) genetic remnants of the Bantu demographic expansion in sub-Saharan Africa. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed at evaluating whether human papillomavirus (HPV) groups and E6/E7 mRNA of HPV 16, 18, 31, 33, and 45 are prognostic of cervical intraepithelial neoplasia (CIN) 2 outcome in women with a cervical smear showing a low-grade squamous intraepithelial lesion (LSIL). This cohort study included women with biopsy-confirmed CIN 2 who were followed up for 12 months, with cervical smear and colposcopy performed every three months. Women with a negative or low-risk HPV status showed 100% CIN 2 regression. The CIN 2 regression rates at the 12-month follow-up were 69.4% for women with alpha-9 HPV versus 91.7% for other HPV species or HPV-negative status (P < 0.05). For women with HPV 16, the CIN 2 regression rate at the 12-month follow-up was 61.4% versus 89.5% for other HPV types or HPV-negative status (P < 0.05). The CIN 2 regression rate was 68.3% for women who tested positive for HPV E6/E7 mRNA versus 82.0% for the negative results, but this difference was not statistically significant. The expectant management for women with biopsy-confirmed CIN 2 and previous cytological tests showing LSIL exhibited a very high rate of spontaneous regression. HPV 16 is associated with a higher CIN 2 progression rate than other HPV infections. HPV E6/E7 mRNA is not a prognostic marker of the CIN 2 clinical outcome, although this analysis cannot be considered conclusive. Given the small sample size, this study could be considered a pilot for future larger studies on the role of predictive markers of CIN 2 evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human bocavirus 1 (HBoV1) is associated with respiratory infections worldwide, mainly in children. Similar to other parvoviruses, it is believed that HBoV1 can persist for long periods of time in humans, probably through maintaining concatemers of the virus single-stranded DNA genome in the nuclei of infected cells. Recently, HBoV-1 was detected in high rates in adenoid and palatine tonsils samples from patients with chronic adenotonsillar diseases, but nothing is known about the virus replication levels in those tissues. A 3-year prospective hospital-based study was conducted to detect and quantify HBoV1 DNA and mRNAs in samples of the adenoids (AD), palatine tonsils (PT), nasopharyngeal secretions (NPS), and peripheral blood (PB) from patients undergoing tonsillectomy for tonsillar hypertrophy or recurrent tonsillitis. HBoV1 was detected in 25.3% of the AD samples, while the rates of detection in the PT, NPS, and PB samples were 7.2%, 10.5%, and 1.7%, respectively. The viral loads were higher in AD samples, and 27.3% of the patients with HBoV had mRNA detectable in this tissue. High viral loads and detectable mRNA in the AD were associated with HBoV1 detection in the other sample sites. The adenoids are an important site of HBoV1 replication and persistence in children with tonsillar hypertrophy. The adenoids contain high HBoV1 loads and are frequently positive for HBoV mRNA, and this is associated with the detection of HBoV1 in secretions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avian pathogenic Escherichia coli (APEC) strains belong to a category that is associated with colibacillosis, a serious illness in the poultry industry worldwide. Additionally, some APEC groups have recently been described as potential zoonotic agents. In this work, we compared APEC strains with extraintestinal pathogenic E. coli (ExPEC) strains isolated from clinical cases of humans with extra-intestinal diseases such as urinary tract infections (UTI) and bacteremia. PCR results showed that genes usually found in the ColV plasmid (tsh, iucA, iss, and hlyF) were associated with APEC strains while fyuA, irp-2, fepC sitDchrom, fimH, crl, csgA, afa, iha, sat, hlyA, hra, cnf1, kpsMTII, clpVSakai and malX were associated with human ExPEC. Both categories shared nine serogroups (O2, O6, O7, O8, O11, O19, O25, O73 and O153) and seven sequence types (ST10, ST88, ST93, ST117, ST131, ST155, ST359, ST648 and ST1011). Interestingly, ST95, which is associated with the zoonotic potential of APEC and is spread in avian E. coli of North America and Europe, was not detected among 76 APEC strains. When the strains were clustered based on the presence of virulence genes, most ExPEC strains (71.7%) were contained in one cluster while most APEC strains (63.2%) segregated to another. In general, the strains showed distinct genetic and fingerprint patterns, but avian and human strains of ST359, or ST23 clonal complex (CC), presented more than 70% of similarity by PFGE. The results demonstrate that some zoonotic-related STs (ST117, ST131, ST10CC, ST23CC) are present in Brazil. Also, the presence of moderate fingerprint similarities between ST359 E. coli of avian and human origin indicates that strains of this ST are candidates for having zoonotic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substantial complexity has been introduced into treatment regimens for patients with human immunodeficiency virus (HIV) infection. Many drug-related problems (DRPs) are detected in these patients, such as low adherence, therapeutic inefficacy, and safety issues. We evaluated the impact of pharmacist interventions on CD4+ T-lymphocyte count, HIV viral load, and DRPs in patients with HIV infection. In this 18-month prospective controlled study, 90 outpatients were selected by convenience sampling from the Hospital Dia-University of Campinas Teaching Hospital (Brazil). Forty-five patients comprised the pharmacist intervention group and 45 the control group; all patients had HIV infection with or without acquired immunodeficiency syndrome. Pharmaceutical appointments were conducted based on the Pharmacotherapy Workup method, although DRPs and pharmacist intervention classifications were modified for applicability to institutional service limitations and research requirements. Pharmacist interventions were performed immediately after detection of DRPs. The main outcome measures were DRPs, CD4+ T-lymphocyte count, and HIV viral load. After pharmacist intervention, DRPs decreased from 5.2 (95% confidence interval [CI] =4.1-6.2) to 4.2 (95% CI =3.3-5.1) per patient (P=0.043). A total of 122 pharmacist interventions were proposed, with an average of 2.7 interventions per patient. All the pharmacist interventions were accepted by physicians, and among patients, the interventions were well accepted during the appointments, but compliance with the interventions was not measured. A statistically significant increase in CD4+ T-lymphocyte count in the intervention group was found (260.7 cells/mm(3) [95% CI =175.8-345.6] to 312.0 cells/mm(3) [95% CI =23.5-40.6], P=0.015), which was not observed in the control group. There was no statistical difference between the groups regarding HIV viral load. This study suggests that pharmacist interventions in patients with HIV infection can cause an increase in CD4+ T-lymphocyte counts and a decrease in DRPs, demonstrating the importance of an optimal pharmaceutical care plan.