942 resultados para flying robots


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional calculus (FC) is being used in several distinct areas of science and engineering, being recognized its ability to yield a superior modelling and control in many dynamical systems. This article illustrates the application of FC in the area of robot control. A Fractional Order PDμ controller is proposed for the control of an hexapod robot with 3 dof legs. It is demonstrated the superior performance of the system by using the FC concepts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms have been investigated in the last years. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms. In this case the trajectory planning is formulated as an optimization problem with constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A robot’s drive has to exert appropriate driving forces that can keep its arm and end effector at the proper position, velocity and acceleration, and simultaneously has to compensate for the effects of the contact forces arising between the tool and the workpiece depending on the needs of the actual technological operation. Balancing the effects of a priori unknown external disturbance forces and the inaccuracies of the available dynamic model of the robot is also important. Technological tasks requiring well prescribed end effector trajectories and contact forces simultaneously are challenging control problems that can be tackled in various manners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a new PCA-based positioning sensor and localization system for mobile robots to operate in unstructured environments (e. g. industry, services, domestic ...) is proposed and experimentally validated. The inexpensive positioning system resorts to principal component analysis (PCA) of images acquired by a video camera installed onboard, looking upwards to the ceiling. This solution has the advantage of avoiding the need of selecting and extracting features. The principal components of the acquired images are compared with previously registered images, stored in a reduced onboard image database, and the position measured is fused with odometry data. The optimal estimates of position and slippage are provided by Kalman filters, with global stable error dynamics. The experimental validation reported in this work focuses on the results of a set of experiments carried out in a real environment, where the robot travels along a lawn-mower trajectory. A small position error estimate with bounded co-variance was always observed, for arbitrarily long experiments, and slippage was estimated accurately in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interest in the development of climbing robots is growing rapidly. Motivations are typically to increase the operation efficiency by obviating the costly assembly of scaffolding or to protect human health and safety in hazardous tasks. Climbing robots are starting to be developed for applications ranging from cleaning to inspection of difficult to reach constructions. These robots should be capable of travelling on different types of surfaces, with varying inclinations, such as floors, walls, ceilings, and to walk between such surfaces. Furthermore, these machines should be capable of adapting and reconfiguring for various environment conditions and to be self-contained. Regarding the adhesion to the surface, they should be able to produce a secure gripping force using a light-weight mechanism. This paper presents a survey of different applications and technologies proposed for the implementation of climbing robots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article studies several Fractional Order Control algorithms used for joint control of a hexapod robot. Both Padé and series approximations to the fractional derivative are considered for the control algorithm. The walking performance is evaluated through two indices: The mean absolute density of energy used per unit distance travelled, and the control effort. A set of simulation experiments reveals the influence of the different approximations upon the proposed indices. The results show that the fractional proportional and derivative algorithm, implemented using the Padé approximation with a small number of terms, gives the best results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to present the evolution and the state-of-the-art in the area of legged locomotion systems. In a first phase different possibilities for implementing mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase a historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones of technological and scientific progress. After this historical timeline, some of the present-day systems are examined and their performance is analyzed. In a third phase the major areas of research and development that are presently being followed in the construction of legged robots are pointed out. Finally, some still unsolved problems that remain defying robotics research, are also addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os sistemas de perceção existentes nos robôs autónomos, hoje em dia, são bastante complexos. A informação dos vários sensores, existentes em diferentes partes do robôs, necessitam de estar relacionados entre si face ao referencial do robô ou do mundo. Para isso, o conhecimento da atitude (posição e rotação) entre os referenciais dos sensores e o referencial do robô é um fator critico para o desempenho do mesmo. O processo de calibração dessas posições e translações é chamado calibração dos parâmetros extrínsecos. Esta dissertação propõe o desenvolvimento de um método de calibração autónomo para robôs como câmaras direcionais, como é o caso dos robôs da equipa ISePorto. A solução proposta consiste na aquisição de dados da visão, giroscópio e odometria durante uma manobra efetuada pelo robô em torno de um alvo com um padrão conhecido. Esta informação é então processada em conjunto através de um Extended Kalman Filter (EKF) onde são estimados necessários para relacionar os sensores existentes no robô em relação ao referencial do mesmo. Esta solução foi avaliada com recurso a vários testes e os resultados obtidos foram bastante similares aos obtidos pelo método manual, anteriormente utilizado, com um aumento significativo em rapidez e consistência.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho foi elaborado no âmbito do Mestrado de Ensino de Matemática do 3º Ciclo do Ensino Básico e Secundário da Universidade da Madeira, no ano letivo de 2012/2013. Os grandes objetivos deste estudo são os de analisar qualitativamente uma atividade, para compreender como é que os alunos aprendem trigonometria, utilizando os robots NXT da Lego. De igual modo, se procede também, de forma sucinta, à apresentação do trabalho desenvolvido pelo grupo de estágio, ao longo da Prática de Ensino Supervisionado. Para a realização da investigação, foram recolhidos dados pelo investigador, através de registos audiovisuais do trabalho dos alunos, com câmara e vídeo. Com o fim de melhor estudar o problema aqui apresentado, o mesmo foi dissecado em três questões de investigação: (a) Que aprendizagens os alunos realizam com a montagem, programação e interação com os robots? (b) De que forma é que os alunos aprendem trigonometria, quando utilizam os Robots? (c) Quais as dificuldades manifestadas pelos alunos na resolução de problemas? As questões de investigação iluminaram a análise dos dados. Das conclusões que advêm deste estudo destaca-se o papel essencial da robótica e dos materiais manipuláveis, na construção e concetualização do conhecimento dos alunos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this EPS@ISEP project proposed in the Spring of 2014 was to develop a flapping wing flying robot. The project was embraced by a multinational team composed of four students from different countries and fields of study. The team designed and implemented a robot inspired by a biplane design, constructed from lightweight materials and battery powered. The prototype, called MyBird, was built with a 250 € budget, reuse existing materials as well as low cost solutions. Although the team's initial idea was to build a light radio controlled robot, time limitations along with setbacks involving the required electrical components led to a light but not radio controlled prototype. The team, from the experience gathered, made a number of future improvement suggestions, namely, the addition of radio control and a camera and the adoption of articulated monoplane design instead of the current biplane design for the wings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes the development of biologically inspired robots as the capstone project of the European Project Semester (EPS) framework. EPS is a one semester student centred international programme offered by a group of European engineering schools (EPS Providers) as part of their student exchange programme portfolio. EPS is organized around a central module (the EPS project) and a set of complementary supportive modules. Project proposals refer to open multidisciplinary real world problems. Its purpose is to expose students to problems of a greater dimension and complexity than those faced throughout the degree programme as well as to put them in contact with the socalled real world, in opposition to the academic world. Students are organized in teams, grouping individuals from diverse academic backgrounds and nationalities, and each team is fully responsible for conducting its project. EPS provides an integrated framework for undertaking capstone projects, which is focused on multicultural and multidisciplinary teamwork, communication, problem-solving, creativity, leadership, entrepreneurship, ethical reasoning and global contextual analysis. The design and development of biologically inspired robots allows the students to fulfil the previously described requirements and objectives and, as a result, we recommend the adoption of these projects within the EPS project capstone module for the benefit of engineering students.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the development of a fish-like robot called Bro-Fish. Bro-Fish aims to be an educational toy dedicated to teaching mechanics, programming and the physics of floating objects to youngsters. The underlying intention is to awaken the interest of children for technology, especially biomimetic (biologically inspired) approaches, in order to promote sustainability and raise the level of ecological awareness. The main focus of this project was to create a robot with carangiform locomotion and controllable swimming, providing the opportunity to customize parts and experiment with the physics of floating objects. Therefore, the locomotion principles of fishes and mechanisms developed in related projects were analysed. Inspired by this background knowledge, a prototype was designed and implemented. The main achievement is the new tail mechanism that propels the robot. The tail resembles the undulation motion of fish bodies and is actuated in an innovative way, triggered by an elegant movement of a rotating helicoidal. First experimental tests revealed the potential of the proposed methodology to effectively generate forward propulsion.