968 resultados para finite complex unitary groups


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Differential Unitary Space-Time Block codes (STBCs) offer a means to communicate on the Multiple Input Multiple Output (MIMO) channel without the need for channel knowledge at both the transmitter and the receiver. Recently Yuen-Guan-Tjhung have proposed Single-Symbol-Decodable Differential Space-Time Modulation based on Quasi-Orthogonal Designs (QODs) by replacing the original unitary criterion by a scaled unitary criterion. These codes were also shown to perform better than differential unitary STBCs from Orthogonal Designs (ODs). However the rate (as measured in complex symbols per channel use) of the codes of Yuen-Guan-Tjhung decay as the number of transmit antennas increase. In this paper, a new class of differential scaled unitary STBCs for all even number of transmit antennas is proposed. These codes have a rate of 1 complex symbols per channel use, achieve full diversity and moreover they are four-group decodable, i.e., the set of real symbols can be partitioned into four groups and decoding can be done for the symbols in each group separately. Explicit construction of multidimensional signal sets that yield full diversity for this new class of codes is also given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A set of sufficient conditions to construct lambda-real symbol Maximum Likelihood (ML) decodable STBCs have recently been provided by Karmakar et al. STBCs satisfying these sufficient conditions were named as Clifford Unitary Weight (CUW) codes. In this paper, the maximal rate (as measured in complex symbols per channel use) of CUW codes for lambda = 2(a), a is an element of N is obtained using tools from representation theory. Two algebraic constructions of codes achieving this maximal rate are also provided. One of the constructions is obtained using linear representation of finite groups whereas the other construction is based on the concept of right module algebra over non-commutative rings. To the knowledge of the authors, this is the first paper in which matrices over non-commutative rings is used to construct STBCs. An algebraic explanation is provided for the 'ABBA' construction first proposed by Tirkkonen et al and the tensor product construction proposed by Karmakar et al. Furthermore, it is established that the 4 transmit antenna STBC originally proposed by Tirkkonen et al based on the ABBA construction is actually a single complex symbol ML decodable code if the design variables are permuted and signal sets of appropriate dimensions are chosen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We prove that the group of continuous isometries for the Kobayashi or Caratheodory metrics of a strongly convex domain in C-n is compact unless the domain is biholomorphic to the ball. A key ingredient, proved using differential geometric ideas, is that a continuous isometry between a strongly convex domain and the ball has to be biholomorphic or anti-biholomorphic. Combining this with a metric version of Pinchuk's rescaling technique gives the main result.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main results of this thesis show that a Patterson-Sullivan measure of a non-elementary geometrically finite Kleinian group can always be characterized using geometric covering and packing constructions. This means that if the standard covering and packing constructions are modified in a suitable way, one can use either one of them to construct a geometric measure which is identical to the Patterson-Sullivan measure. The main results generalize and modify results of D. Sullivan which show that one can sometimes use the standard covering construction to construct a suitable geometric measure and sometimes the standard packing construction. Sullivan has shown also that neither or both of the standard constructions can be used to construct the geometric measure in some situations. The main modifications of the standard constructions are based on certain geometric properties of limit sets of Kleinian groups studied first by P. Tukia. These geometric properties describe how closely the limit set of a given Kleinian group resembles euclidean planes or spheres of varying dimension on small scales. The main idea is to express these geometric properties in a quantitative form which can be incorporated into the gauge functions used in the modified covering and packing constructions. Certain estimation results for general conformal measures of Kleinian groups play a crucial role in the proofs of the main results. These estimation results are generalizations and modifications of similar results considered, among others, by B. Stratmann, D. Sullivan, P. Tukia and S. Velani. The modified constructions are in general defined without reference to Kleinian groups, so they or their variants may prove useful in some other contexts in addition to that of Kleinian groups.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we discuss the recent progresses in spectral finite element modeling of complex structures and its application in real-time structural health monitoring system based on sensor-actuator network and near real-time computation of Damage Force Indicator (DFI) vector. A waveguide network formalism is developed by mapping the original variational problem into the variational problem involving product spaces of 1D waveguides. Numerical convergence is studied using a h()-refinement scheme, where is the wavelength of interest. Computational issues towards successful implementation of this method with SHM system are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We associate a sheaf model to a class of Hilbert modules satisfying a natural finiteness condition. It is obtained as the dual to a linear system of Hermitian vector spaces (in the sense of Grothendieck). A refined notion of curvature is derived from this construction leading to a new unitary invariant for the Hilbert module. A division problem with bounds, originating in Douady's privilege, is related to this framework. A series of concrete computations illustrate the abstract concepts of the paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The primary focus of this thesis is on the interplay of descriptive set theory and the ergodic theory of group actions. This incorporates the study of turbulence and Borel reducibility on the one hand, and the theory of orbit equivalence and weak equivalence on the other. Chapter 2 is joint work with Clinton Conley and Alexander Kechris; we study measurable graph combinatorial invariants of group actions and employ the ultraproduct construction as a way of constructing various measure preserving actions with desirable properties. Chapter 3 is joint work with Lewis Bowen; we study the property MD of residually finite groups, and we prove a conjecture of Kechris by showing that under general hypotheses property MD is inherited by a group from one of its co-amenable subgroups. Chapter 4 is a study of weak equivalence. One of the main results answers a question of Abért and Elek by showing that within any free weak equivalence class the isomorphism relation does not admit classification by countable structures. The proof relies on affirming a conjecture of Ioana by showing that the product of a free action with a Bernoulli shift is weakly equivalent to the original action. Chapter 5 studies the relationship between mixing and freeness properties of measure preserving actions. Chapter 6 studies how approximation properties of ergodic actions and unitary representations are reflected group theoretically and also operator algebraically via a group's reduced C*-algebra. Chapter 7 is an appendix which includes various results on mixing via filters and on Gaussian actions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The model: groups of Lie-Chevalley type and buildingsThis paper is not the presentation of a completed theory but rather a report on a search progressing as in the natural sciences in order to better understand the relationship between groups and incidence geometry, in some future sought-after theory Τ. The search is based on assumptions and on wishes some of which are time-dependent, variations being forced, in particular, by the search itself.A major historical reference for this subject is, needless to say, Klein's Erlangen Programme. Klein's views were raised to a powerful theory thanks to the geometric interpretation of the simple Lie groups due to Tits (see for instance), particularly his theory of buildings and of groups with a BN-pair (or Tits systems). Let us briefly recall some striking features of this.Let G be a group of Lie-Chevalley type of rank r, denned over GF(q), q = pn, p prime. Let Xr denote the Dynkin diagram of G. To these data corresponds a unique thick building B(G) of rank r over the Coxeter diagram Xr (assuming we forget arrows provided by the Dynkin diagram). It turns out that B(G) can be constructed in a uniform way for all G, from a fixed p-Sylow subgroup U of G, its normalizer NG(U) and the r maximal subgroups of G containing NG(U).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CFD modelling of 'real-life' processes often requires solutions in complex three dimensional geometries, which can often result in meshes where aspects of it are badly distorted. Cell-centred finite volume methods, typical of most commercial CFD tools, are computationally efficient, but can lead to convergence problems on meshes which feature cells with high non-orthogonal shapes. The vertex-based finite volume method handles distorted meshes with relative ease, but is computationally expensive. A combined vertex-based - cell-centred (VB-CC) technique, detailed in this paper, allows solutions on distorted meshes that defeat purely cell-centred physical models to be employed in the solution of other transported quantities. The VB-CC method is validated with benchmark solutions for thermally driven flow and turbulent flow. An early application of this hybrid technique is to three-dimensional flow over an aircraft wing, although it is planned to use it in a wide variety of processing applications in the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Source: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS Volume: 131 Pages: 1257-1273 Part: Part 6 Published: 2001 Times Cited: 5 References: 23 Citation MapCitation Map beta Abstract: We show that the Banach space M of regular sigma-additive finite Borel complex-valued measures on a non-discrete locally compact Hausdorff topological Abelian group is the direct sum of two linear closed subspaces M-D and M-ND, where M-D is the set of measures mu is an element of M whose Fourier transform vanishes at infinity and M-ND is the set of measures mu is an element of M such that nu is not an element of MD for any nu is an element of M \ {0} absolutely continuous with respect to the variation \mu\. For any corresponding decomposition mu = mu(D) + mu(ND) (mu(D) is an element of M-D and mu(ND) is an element of M-ND) there exist a Borel set A = A(mu) such that mu(D) is the restriction of mu to A, therefore the measures mu(D) and mu(ND) are singular with respect to each other. The measures mu(D) and mu(ND) are real if mu is real and positive if mu is positive. In the case of singular continuous measures we have a refinement of Jordan's decomposition theorem. We provide series of examples of different behaviour of convolutions of measures from M-D and M-ND.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A unitary operator V and a rank 2 operator R acting on a Hilbert space H are constructed such that V + R is hypercyclic. This answers affirmatively a question of Salas whether a finite rank perturbation of a hyponormal operator can be supercyclic.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this thesis is to investigate some open problems in the area of combinatorial number theory referred to as zero-sum theory. A zero-sequence in a finite cyclic group G is said to have the basic property if it is equivalent under group automorphism to one which has sum precisely IGI when this sum is viewed as an integer. This thesis investigates two major problems, the first of which is referred to as the basic pair problem. This problem seeks to determine conditions for which every zero-sequence of a given length in a finite abelian group has the basic property. We resolve an open problem regarding basic pairs in cyclic groups by demonstrating that every sequence of length four in Zp has the basic property, and we conjecture on the complete solution of this problem. The second problem is a 1988 conjecture of Kleitman and Lemke, part of which claims that every sequence of length n in Zn has a subsequence with the basic property. If one considers the special case where n is an odd integer we believe this conjecture to hold true. We verify this is the case for all prime integers less than 40, and all odd integers less than 26. In addition, we resolve the Kleitman-Lemke conjecture for general n in the negative. That is, we demonstrate a sequence in any finite abelian group isomorphic to Z2p (for p ~ 11 a prime) containing no subsequence with the basic property. These results, as well as the results found along the way, contribute to many other problems in zero-sum theory.