905 resultados para discrete Hartley transform (DHT)
Resumo:
This paper adresses the problem on processing biological data such as cardiac beats, audio and ultrasonic range, calculating wavelet coefficients in real time, with processor clock running at frequency of present ASIC's and FPGA. The Paralell Filter Architecture for DWT has been improved, calculating wavelet coefficients in real time with hardware reduced to 60%. The new architecture, which also processes IDWT, is implemented with the Radix-2 or the Booth-Wallace Constant multipliers. Including series memory register banks, one integrated circuit Signal Analyzer, ultrasonic range, is presented.
Resumo:
This paper addresses the problem of processing biological data, such as cardiac beats in the audio and ultrasonic range, and on calculating wavelet coefficients in real time, with the processor clock running at a frequency of present application-specified integrated circuits and field programmable gate array. The parallel filter architecture for discrete wavelet transform (DWT) has been improved, calculating the wavelet coefficients in real time with hardware reduced up to 60%. The new architecture, which also processes inverse DWT, is implemented with the Radix-2 or the Booth-Wallace constant multipliers. One integrated circuit signal analyzer in the ultrasonic range, including series memory register banks, is presented. © 2007 IEEE.
Resumo:
This paper presents parallel recursive algorithms for the computation of the inverse discrete Legendre transform (DPT) and the inverse discrete Laguerre transform (IDLT). These recursive algorithms are derived using Clenshaw's recurrence formula, and they are implemented with a set of parallel digital filters with time-varying coefficients.
Resumo:
We introduce a new discrete polynomial transform constructed from the rows of Pascal’s triangle. The forward and inverse transforms are computed the same way in both the oneand two-dimensional cases, and the transform matrix can be factored into binary matrices for efficient hardware implementation. We conclude by discussing applications of the transform in
Resumo:
Clenshaw’s recurrenee formula is used to derive recursive algorithms for the discrete cosine transform @CT) and the inverse discrete cosine transform (IDCT). The recursive DCT algorithm presented here requires one fewer delay element per coefficient and one fewer multiply operation per coeflident compared with two recently proposed methods. Clenshaw’s recurrence formula provides a unified development for the recursive DCT and IDCT algorithms. The M v e al gorithms apply to arbitrary lengtb algorithms and are appropriate for VLSI implementation.
Resumo:
An alternative way is provided to define the discrete Pascal transform using difference operators to reveal the fundamental concept of the transform, in both one- and two-dimensional cases, which is extended to cover non-square two-dimensional applications. Efficient modularised implementations are proposed.
Digital signal processing and digital system design using discrete cosine transform [student course]
Resumo:
The discrete cosine transform (DCT) is an important functional block for image processing applications. The implementation of a DCT has been viewed as a specialized research task. We apply a micro-architecture based methodology to the hardware implementation of an efficient DCT algorithm in a digital design course. Several circuit optimization and design space exploration techniques at the register-transfer and logic levels are introduced in class for generating the final design. The students not only learn how the algorithm can be implemented, but also receive insights about how other signal processing algorithms can be translated into a hardware implementation. Since signal processing has very broad applications, the study and implementation of an extensively used signal processing algorithm in a digital design course significantly enhances the learning experience in both digital signal processing and digital design areas for the students.
Resumo:
The problem of channel estimation for multicarrier communications is addressed. We focus on systems employing the Discrete Cosine Transform Type-I (DCT1) even at both the transmitter and the receiver, presenting an algorithm which achieves an accurate estimation of symmetric channel filters using only a small number of training symbols. The solution is obtained by using either matrix inversion or compressed sensing algorithms. We provide the theoretical results which guarantee the validity of the proposed technique for the DCT1. Numerical simulations illustrate the good behaviour of the proposed algorithm.
Resumo:
A set of DCT domain properties for shifting and scaling by real amounts, and taking linear operations such as differentiation is described. The DCT coefficients of a sampled signal are subjected to a linear transform, which returns the DCT coefficients of the shifted, scaled and/or differentiated signal. The properties are derived by considering the inverse discrete transform as a cosine series expansion of the original continuous signal, assuming sampling in accordance with the Nyquist criterion. This approach can be applied in the signal domain, to give, for example, DCT based interpolation or derivatives. The same approach can be taken in decoding from the DCT to give, for example, derivatives in the signal domain. The techniques may prove useful in compressed domain processing applications, and are interesting because they allow operations from the continuous domain such as differentiation to be implemented in the discrete domain. An image matching algorithm illustrates the use of the properties, with improvements in computation time and matching quality.
Resumo:
This paper proposes a JPEG-2000 compliant architecture capable of computing the 2 -D Inverse Discrete Wavelet Transform. The proposed architecture uses a single processor and a row-based schedule to minimize control and routing complexity and to ensure that processor utilization is kept at 100%. The design incorporates the handling of borders through the use of symmetric extension. The architecture has been implemented on the Xilinx Virtex2 FPGA.