996 resultados para compression set


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coding gain in subband coding, a popular technique for achieving signal compression, depends on how the input signal spectrum is decomposed into subbands. The optimality of such decomposition is conventionally addressed by designing appropriate filter banks. The issue of optimal decomposition of the input spectrum is addressed by choosing the set of band that, for a given number of bands, will achieve maximum coding gain. A set of necessary conditions for such optimality is derived, and an algorithm to determine the optimal band edges is then proposed. These band edges along with ideal filters, achieve the upper bound of coding gain for a given number of bands. It is shown that with ideal filters, as well as with realizable filters for some given effective length, such a decomposition system performs better than the conventional nonuniform binary tree-structured decomposition in some cases for AR sources as well as images

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary form only given. A scheme for code compression that has a fast decompression algorithm, which can be implemented using simple hardware, is proposed. The effectiveness of the scheme on the TMS320C62x architecture that includes the overheads of a line address table (LAT) is evaluated and obtained compression rates ranging from 70% to 80%. Two schemes for decompression are proposed. The basic idea underlying the scheme is a simple clustering algorithm that partially maps a block of instructions into a set of clusters. The clustering algorithm is a greedy algorithm based on the frequency of occurrence of various instructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characterization of a closed-cell aluminum foam with the trade name Alporas is carried out here under compression loading for a nominal cross-head speed of 1 mm/min. Foam samples in the form of cubes are tested in a UTM and the average stress-strain behavior is obtained which clearly displays a plateau strength of approximately 2 MPa. It is noted that the specific energy absorption capacity of the foam can be high despite its low strength which makes it attractive as a material for certain energy-absorbing countermeasures. The mechanical behavior of the present Alporas foam is simulated using cellular (i.e. so-called microstructure-based) and solid element-based finite element models. The efficacy of the cellular approach is shown, perhaps for the first time in published literature, in terms of prediction of both stress-strain response and inclined fold formation during axial crush under compression loading. Keeping in mind future applications under impact loads, limited results are presented when foam samples are subjected to low velocity impact in a drop-weight test set-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas turbine compression systems are required to perform adequately over a range of operating conditions. Complexity has encouraged the conventional design process for compressors to focus initially on one operating point, usually the most commonor arduous, to draw up an outline design. Generally, only as this initial design is refined is its offdesign performance assessed in detail. Not only does this necessarily introduce a potentially costly and timeconsuming extra loop in the design process, but it also may result in a design whose offdesign behavior is suboptimal. Aversion of nonintrusive polynomial chaos was previously developed in which a set of orthonormal polynomials was generated to facilitate a rapid analysis of robustness in the presence of generic uncertainties with good accuracy. In this paper, this analysis method is incorporated in real time into the design process for the compression system of a three-shaft gas turbine aeroengine. This approach to robust optimization is shown to lead to designs that exhibit consistently improved system performance with reduced sensitivity to offdesign operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous in-vitro studies have established that cells react to their physical environment and to applied mechanical loading. However, the mechanisms underlying such phenomena are poorly understood. Previous modelling of cell compression considered the cell as a passive homogenous material, requiring an artificial increase in the stiffness of spread cells to replicate experimentally measured forces. In this study, we implement a fully 3D active constitutive formulation that predicts the distribution, remodelling, and contractile behaviour of the cytoskeleton. Simulations reveal that polarised and axisymmetric spread cells contain stress fibres which form dominant bundles that are stretched during compression. These dominant fibres exert tension; causing an increase in computed compression forces compared to round cells. In contrast, fewer stress fibres are computed for round cells and a lower resistance to compression is predicted. The effect of different levels of cellular contractility associated with different cell phenotypes is also investigated. Highly contractile cells form more dominant circumferential stress fibres and hence provide greater resistance to compression. Computed predictions correlate strongly with published experimentally observed trends of compression resistance as a function of cellular contractility and offer an insight into the link between cell geometry, stress fibre distribution and contractility, and cell deformability. Importantly, it is possible to capture the behaviour of both round and spread cells using a given, unchanged set of material parameters for each cell type. Finally, it is demonstrated that stress distributions in the cell cytoplasm and nucleus computed using the active formulation differ significantly from those computed using passive material models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last 50 years, the city of Venice, Italy, has observed a significant increase in the frequency of flooding. Numerous engineering solutions have been proposed, including the use of movable gates located at the three lagoon inlets. A key element in the prediction of performance is the estimation of settlements of the foundation system of the gates. The soils of Venice Lagoon are characterized by very erratic depositional patterns of clayey silts, resulting in an extremely heterogeneous stratigraphy with discontinuous layering. The soils are also characterized by varying contents of coarse and fine-grained particles. In contrast, the mineralogical composition of these deposits is quite uniform, which allows us to separate the influence of mineralogy from that of grain size distribution. A comprehensive geotechnical testing program was performed to assess the one-dimensional compression of Venice soils and examine the factors affecting the response in the transition from one material type to another. The compressibility of these natural silty clayey soils can be described by a single set of constitutive laws incorporating the relative fraction of granular to cohesive material. © 2007 ASCE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design optimisation of compressor systems is a computationally expensive problem due to the large number of variables, complicated design space and expense of the analysis tools. One approach to reduce the expense of the process and make it achievable in industrial timescales is to employ multi-fidelity techniques, which utilise more rapid tools in conjunction with the highest fidelity analyses. The complexity of the compressor design landscape is such that the starting point for these optimisations can influence the achievable results; these starting points are often existing (optimised) compressor designs, which form a limited set in terms of both quantity and diversity of the design. To facilitate the multi-fidelity optimisation procedure, a compressor synthesis code was developed which allowed the performance attributes (e.g. stage loadings, inlet conditions) to be stipulated, enabling the generation of a variety of compressors covering a range of both design topology and quality to act as seeding geometries for the optimisation procedures. Analysis of the performance of the multi-fidelity optimisation system when restricting its exploration space to topologically different areas of the design space indicated little advantage over allowing the system to search the design space itself. However, comparing results from optimisations started from seed designs with different aerodynamic qualites indicated an improved performance could be achieved by starting an optimisation from a higher quality point, and thus that the choice of starting point did affect the final outcome of the optimisations. Both investigations indicated that the performance gains through the optimisation were largely defined by the early exploration of the design space where the multi-fidelity speedup could be exploited, thus extending this region is likely to have the greatest effect on performance of the optimisation system. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aerodynamic design of turbomachinery presents the design optimisation community with a number of exquisite challenges. Chief among these are the size of the design space and the extent of discontinuity therein. This discontinuity can serve to limit the full exploitation of high-fidelity computational fluid dynamics (CFD): such codes require detailed geometric information often available only sometime after the basic configuration of the machine has been set by other means. The premise of this paper is that it should be possible to produce higher performing designs in less time by exploiting multi-fidelity techniques to effectively harness CFD earlier in the design process, specifically by facilitating its participation in configuration selection. The adopted strategy of local multi-fidelity correction, generated on demand, combined with a global search algorithm via an adaptive trust region is first tested on a modest, smooth external aerodynamic problem. Speed-up of an order of magnitude is demonstrated, comparable to established techniques applied to smooth problems. A number of enhancements aimed principally at effectively evaluating a wide range of configurations quickly is then applied to the basic strategy, and the emerging technique is tested on a generic aeroengine core compression system. A similar order of magnitude speed-up is achieved on this relatively large and highly discontinuous problem. A five-fold increase in the number of configurations assessed with CFD is observed. As the technique places constraints neither on the underlying physical modelling of the constituent analysis codes nor on first-order agreement between those codes, it has potential applicability to a range of multidisciplinary design challenges. © 2012 by Jerome Jarrett and Tiziano Ghisu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design optimisation of compressor systems is a computationally expensive problem due to the large number of variables, complicated design space and expense of the analysis tools. One approach to reduce the expense of the process and make it achievable in industrial timescales is to employ multi-fidelity techniques, which utilise more rapid tools in conjunction with the highest fidelity analyses. The complexity of the compressor design landscape is such that the starting point for these optimisations can influence the achievable results; these starting points are often existing (optimised) compressor designs, which form a limited set in terms of both quantity and diversity of the design. To facilitate the multi-fidelity optimisation procedure, a compressor synthesis code was developed which allowed the performance attributes (e.g. stage loadings, inlet conditions) to be stipulated, enabling the generation of a variety of compressors covering a range of both design topology and quality to act as seeding geometries for the optimisation procedures. Analysis of the performance of the multi-fidelity optimisation system when restricting its exploration space to topologically different areas of the design space indicated little advantage over allowing the system to search the design space itself. However, comparing results from optimisations started from seed designs with different aerodynamic qualites indicated an improved performance could be achieved by starting an optimisation from a higher quality point, and thus that the choice of starting point did affect the final outcome of the optimisations. Both investigations indicated that the performance gains through the optimisation were largely defined by the early exploration of the design space where the multi-fidelity speedup could be exploited, thus extending this region is likely to have the greatest effect on performance of the optimisation system. © 2012 AIAA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an introduction of wavelet transform and multi-resolution analysis is presented. We describe three data compression methods based on wavelet transform for spectral information,and by using the multi-resolution analysis, we compressed spectral data by Daubechies's compactly supported orthogonal wavelet and orthogonal cubic B-splines wavelet, Using orthogonal cubic B-splines wavelet and coefficients of sharpening signal are set to zero, only very few large coefficients are stored, and a favourable data compression can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the compression of multispectral images is addressed. Such 3-D data are characterized by a high correlation across the spectral components. The efficiency of the state-of-the-art wavelet-based coder 3-D SPIHT is considered. Although the 3-D SPIHT algorithm provides the obvious way to process a multispectral image as a volumetric block and, consequently, maintain the attractive properties exhibited in 2-D (excellent performance, low complexity, and embeddedness of the bit-stream), its 3-D trees structure is shown to be not adequately suited for 3-D wavelet transformed (DWT) multispectral images. The fact that each parent has eight children in the 3-D structure considerably increases the list of insignificant sets (LIS) and the list of insignificant pixels (LIP) since the partitioning of any set produces eight subsets which will be processed similarly during the sorting pass. Thus, a significant portion from the overall bit-budget is wastedly spent to sort insignificant information. Through an investigation based on results analysis, we demonstrate that a straightforward 2-D SPIHT technique, when suitably adjusted to maintain the rate scalability and carried out in the 3-D DWT domain, overcomes this weakness. In addition, a new SPIHT-based scalable multispectral image compression algorithm is used in the initial iterations to exploit the redundancies within each group of two consecutive spectral bands. Numerical experiments on a number of multispectral images have shown that the proposed scheme provides significant improvements over related works.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the performance characteristics of rapeseed methyl ester, EN 14214 biodiesel, when used for electrical generation in compression ignition engines. The work was inspired by the need to replace fossil diesel fuel with a sustainable low carbon alternative while maintaining generator performance, power quality, and compliance with ISO 8528-5. A 50-kVA Perkins diesel engine generator was used to assess the impact of biodiesel with particular regard to gen-set fuel consumption, load acceptance, and associated standards. Tests were performed on the diesel gen-set for islanded and grid-connected modes of operation, hence both steady-state and transient performance were fully explored. Performance comparisons were made with conventional fossil diesel fuel, revealing minimal technical barriers for electrical generation from this sustainable, carbon benign fuel. Recommendations for improved transient performance are proposed and validated through tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many applications in applied statistics researchers reduce the complexity of a data set by combining a group of variables into a single measure using factor analysis or an index number. We argue that such compression loses information if the data actually has high dimensionality. We advocate the use of a non-parametric estimator, commonly used in physics (the Takens estimator), to estimate the correlation dimension of the data prior to compression. The advantage of this approach over traditional linear data compression approaches is that the data does not have to be linearized. Applying our ideas to the United Nations Human Development Index we find that the four variables that are used in its construction have dimension three and the index loses information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-velocity impact damage can drastically reduce the residual strength of a composite structure even when the damage is barely visible. The ability to computationally predict the extent of damage and compression-after-impact (CAI) strength of a composite structure can potentially lead to the exploration of a larger design space without incurring significant time and cost penalties. A high-fidelity three-dimensional composite damage model, to predict both low-velocity impact damage and CAI strength of composite laminates, has been developed and implemented as a user material subroutine in the commercial finite element package, ABAQUS/Explicit. The intralaminar damage model component accounts for physically-based tensile and compressive failure mechanisms, of the fibres and matrix, when subjected to a three-dimensional stress state. Cohesive behaviour was employed to model the interlaminar failure between plies with a bi-linear traction–separation law for capturing damage onset and subsequent damage evolution. The virtual tests, set up in ABAQUS/Explicit, were executed in three steps, one to capture the impact damage, the second to stabilize the specimen by imposing new boundary conditions required for compression testing, and the third to predict the CAI strength. The observed intralaminar damage features, delamination damage area as well as residual strength are discussed. It is shown that the predicted results for impact damage and CAI strength correlated well with experimental testing without the need of model calibration which is often required with other damage models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper builds on previous work to show how using holistic and iterative design optimisation tools can be used to produce a commercially viable product that reduces a costly assembly into a single moulded structure. An assembly consisting of a structural metallic support and compression moulding outer shell undergo design optimisation and analysis to remove the support from the assembly process in favour of a structural moulding. The support is analysed and a sheet moulded compound (SMC) alternative is presented, this is then combined into a manufacturable shell design which is then assessed on viability as an alternative to the original.
Alongside this a robust material selection system is implemented that removes user bias towards materials for designs. This system builds on work set out by the Cambridge Material Selector and Boothroyd and Dewhurst, while using a selection of applicable materials currently available for the compression moulding process. This material selection process has been linked into the design and analysis stage, via scripts for use in the finite element environment. This builds towards an analysis toolkit that is suggested to develop and enhance manufacturability of design studies.