972 resultados para cobalt 60
Resumo:
The aim of this study was to evaluate the effect of gamma radiation associated with modified atmosphere on postharvest quality of guavas ‘Pedro Sato’. It was used guavas from the region of Vista Alegre do Alto/São Paulo/Brazil. After harvest, the fruits were immediately transported to the Fruit and Vegetables Laboratory from the Agroindustrial Management and Technology Department, Agronomic Sciences College - UNESP - Botucatu / SP, where they were kept at 10 ° C and 90-95% RH in cold storage, for 28 days. It was used the randomized design, with factorial scheme 5 x 5, three repetitions. The first factor consisted of the following effects: control 1 (without package or irradiation), control 2 (polystyrene package/PS + package low density polyethylene/LDPE and without irradiation), treatment 1 (PS + LDPE and 0.2 kGy ), treatment 2 (PS + LDPE and 0.6 kGy) and treatment 3 (PS + LDPE and 1.0 kGy). The second factor consisted of the evaluation periods: 0, 7, 14, 21 and 28 days. The analyses were: firmness, soluble solids (SS), titratable acidity (TA), maturity index, pH, respiration rate. Concluded that high doses of irradiation promoted a negative effect on physical-chemical characteristics of guava ‘Pedro Sato’, verifying that only the lowest dose associated with modified atmosphere provided fruits with higher quality and acceptability, due to higher maturation rate and soluble solids obtained. Regarding the days of analysis, there were no positive effect of the treatments during storage, where only the early days promoted better values for the variables studied.
Resumo:
We evaluated the effect of gamma irradiation doses (0, 125, 250, and 500 Gy) in control of psychrotrophic bacteria in different strains of Agaricus bisporus (ABI-07/06, ABI-05/03, and PB-1) during storage, cultivated in composts based on oat straw (Avena sativa) and Brachiaria spp. The experimental design was completely randomized in a factorial scheme 4 2 3 (irradiation doses composts strains), with 24 treatments, each consisting of 2 replicates, totaling 48 experimental units (samples of mushrooms). The mushrooms collected from all culture conditions were packaged in plastic polypropylene with 200 g each and subjected to Cobalt-60 irradiator, type Gammacell 220, and dose rate 0.740 kGy h–1 , according to the treatments. Subsequently, the control (nonirradiated) and other treatments were maintained at 4 ± 1°C and 90% relative humidity (RH) in a climatic chamber to perform the microbiological analysis of mushrooms on the 1st and 14th day of storage. According to the results, it was found that the highest mean colony psychotrophic count, after 14 days of storage, was observed in strain ABI-07/06 1.30 × 108 g -1 most probable number (MPN) in nonirradiated mushrooms, coming from Brachiaria grass-based compost, and this same strain under the same storage conditions, coming from the same type of compost that underwent a dose of 500 Gy, obtained a significant reduction in mean colonies of psychrotrophic bacteria (2.25 × 104 g –1 MPN). Thus, the irradiation doses tested favored reducing the number of colonies of psychrotrophic bacteria, regardless of the type of compound and strain of A. bisporus.
Resumo:
This study aimed the avocado ‘Hass’ conservation with the use of radiation. We performed two experiments: Experiment I – fruits irradiated with different doses of cobalt-60 gamma irradiation(0,0; 0,2; 0,4; 0,6 e 1,0 kGy); Experiment II – fruit irradiated by electron accelerator in different doses (0,0; 0,48; 0,8; 1,12 e 1,45 MeV), both maintained at room temperature of 21±1 °C and at relative humidity of 79±5 %. Antioxidant capacity, total phenolic compounds, fresh weight loss, and respiration rate evaluation were performed every three days for 12 days. The experimental design was completely randomized with three replicates per treatment. For statistical analysis, the Tukey test at 5% probability was employed. Under the conditions in which the experiments were performed, the results showed that the gamma radiation use retained the fruits for 12 days, regardless the doses applied. The radiation by electron accelerator use also promote the fruits preservation, regardless the doses employed.
Características pós-colheita em frutos de pitaya orgânica submetida a diferentes doses de irradiação
Resumo:
The objective was to evaluate the influence of different irradiation doses in post-harvest characteristics of pitaya organic species Hylocereus undatus grown in the municipality of Itajobi - SP. The experiment was conducted at the Fruit and Vegetable Department of Agribusiness Management and Technology - FCA / UNESP - Botucatu - SP from December 2008 to January 2009. The radiation process was conducted at the Institute for Energy and Nuclear Research (IPEN) located in Sao Paulo. The design was randomized blocks with six treatments and three replications. The fruits were harvested on the third day after onset of color, selected, cleaned, packed in polystyrene trays covered with PVC film, pre - cooled (8 ° C for 24 hours) and subjected to different doses of gamma irradiation (0.0; 0.2, 0.4, 0.6, 0.8 and 1.0 kGy of cobalt-60) and subsequently stored in cold temperature of 8 degrees C, with relative humidity of about 85 ± 5%. The fruits were evaluated at twenty days after irradiation for pH, soluble solids (SS), Titratable Acidity (TA), ratio (SS / TA) and percentage loss of mass (weight). Data were subjected to analysis of variance and means compared by Tukey test at 5% probability. There were no statistically significant differences (p <0.05) for pH (4.82), soluble solids (11.33) Titratable acidity (0.12) and ratio (79.42) compared to non-irradiated fruit. Regarding the percentage of loss of mass (weight), the highest among the patients treated irradiated with 0.8 kGy (12.12%), whereas for treatment at a dose of 0.0 kGy (irradiated) showed a lower loss weight (11.59%), a result that differs significantly (P <0.05) from the remaining doses of irradiation. The loss of mass (weight) of fruit irradiated with other doses was not statistically significant (P> 0.05).
Resumo:
The reproductive capacity of adult Penaeus (Marsupenaeus) japonicus (Bate) was assessed after exposure to ionizing gamma radiation from a cobalt-60 source. Males and females were each exposed to 0, 10 and 20 Gray (Gy) of ionizing radiation (IR) and reciprocally crossed to give nine mating combinations. Fecundity and hatch rate of resulting spawnings were used as measures of reproductive capacity. IR significantly (P
Resumo:
Cephalopods play a key role in many marine trophic networks and constitute alternative fisheries resources, especially given the ongoing decline in finfish stocks. Along the European coast, the eggs of the cuttlefish Sepia officinalis are characterized by an increasing permeability of the eggshell during development, which leads to selective accumulation of essential and non-essential elements in the embryo. Temperature and pH are two critical factors that affect the metabolism of marine organisms in the coastal shallow waters. In this study, we investigated the effects of pH and temperature through a crossed (3?2; pH 8.1 (pCO2, 400 ppm), 7.85 (900 ppm) and 7.6 (1400 ppm) at 16 and 19°C, respectively) laboratory experiment. Seawater pH showed a strong effect on the egg weight and non-significant impact on the weight of hatchlings at the end of development implying an egg swelling process and embryo growth disturbances. The lower the seawater pH, the more 110 mAg was accumulated in the tissues of hatchlings. The 109Cd concentration factor (CF) decreased with decreasing pH and 65Zn CF reached maximal values pH 7.85, independently of temperature. Our results suggest that pH and temperature affected both the permeability properties of the eggshell and embryonic metabolism. To the best of our knowledge, this is one of the first studies on the consequences of ocean acidification and ocean warming on metal uptake in marine organisms, and our results indicate the need to further evaluate the likely ecotoxicological impact of the global change on the early-life stages of the cuttlefish.
Resumo:
In radiotherapy planning, computed tomography (CT) images are used to quantify the electron density of tissues and provide spatial anatomical information. Treatment planning systems use these data to calculate the expected spatial distribution of absorbed dose in a patient. CT imaging is complicated by the presence of metal implants which cause increased image noise, produce artifacts throughout the image and can exceed the available range of CT number values within the implant, perturbing electron density estimates in the image. Furthermore, current dose calculation algorithms do not accurately model radiation transport at metal-tissue interfaces. Combined, these issues adversely affect the accuracy of dose calculations in the vicinity of metal implants. As the number of patients with orthopedic and dental implants grows, so does the need to deliver safe and effective radiotherapy treatments in the presence of implants. The Medical Physics group at the Cancer Centre of Southeastern Ontario and Queen's University has developed a Cobalt-60 CT system that is relatively insensitive to metal artifacts due to the high energy, nearly monoenergetic Cobalt-60 photon beam. Kilovoltage CT (kVCT) images, including images corrected using a commercial metal artifact reduction tool, were compared to Cobalt-60 CT images throughout the treatment planning process, from initial imaging through to dose calculation. An effective metal artifact reduction algorithm was also implemented for the Cobalt-60 CT system. Electron density maps derived from the same kVCT and Cobalt-60 CT images indicated the impact of image artifacts on estimates of photon attenuation for treatment planning applications. Measurements showed that truncation of CT number data in kVCT images produced significant mischaracterization of the electron density of metals. Dose measurements downstream of metal inserts in a water phantom were compared to dose data calculated using CT images from kVCT and Cobalt-60 systems with and without artifact correction. The superior accuracy of electron density data derived from Cobalt-60 images compared to kVCT images produced calculated dose with far better agreement with measured results. These results indicated that dose calculation errors from metal image artifacts are primarily due to misrepresentation of electron density within metals rather than artifacts surrounding the implants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)