998 resultados para carbonate cycle
Resumo:
The barite and CaCO3 content (in weight percent) of marine sediments can be used to determine spatial and temporal changes in export production (organic and carbonate carbon flux) and/or CaCO3 preservation (inorganic carbon burial). Here we report barite and CaCO3 content in Eocene/Oligocene (E/O) boundary sediments from locations drilled on Shatsky Rise during Ocean Drilling Program Leg 198. Records of these indexes may be used along with other data to determine how the major E/O boundary climatic transition (initiation of Antarctic glaciation and resultant ocean-climate system changes) affected marine export production/preservation at Shatsky Rise. Such data are necessary to elucidate the timing and phasing of changes in the carbon cycle relative to fluctuations in oceanographic conditions across this climatically important interval.
Resumo:
B/Ca ratios in Cibicides mundulus and Cibicides wuellerstorfi have been shown to correlate with the degree of calcite saturation in seawater (D[CO32-]). In the South Pacific, a region of high importance in the global carbon cycle, these species are not continuously present in down-core records. Small numbers of epibenthic foraminifera in samples present an additional challenge, which can be overcome by using laser ablation-inductively coupled-mass spectrometry (LA-ICP-MS). We present a laser ablation based core-top calibration for Cibicides cf. wuellerstorfi, a C. wuellerstorfi morphotype that is abundant in the South Pacific and extend the existing global core top calibration for C. mundulus and C. wuellerstorfi to this region. B/Ca in C. cf. wuellerstorfi are linearly correlated with D[CO32-] and possibly display a higher sensitivity to calcite saturation changes than C. wuellerstorfi. Trace element profiles through C. wuellerstorfi and C. mundulus reveal an intra-shell B/Ca variation of ±36% around the mean shell value. Mg/Ca and B/Ca display opposite trends along the shell. Both phenomena likely result from ontogenetic effects. Intra-shell variability equals intra-sample variability, mean sample B/Ca values can thus be reliably calculated from averaged spot results of single specimen. In the global B/Ca-D[CO32-] range, we observe an inverse relationship between water mass age and D[CO32-].
Resumo:
The transition from the extreme global warmth of the early Eocene 'greenhouse' climate ~55 million years ago to the present glaciated state is one of the most prominent changes in Earth's climatic evolution. It is widely accepted that large ice sheets first appeared on Antarctica ~34 million years ago, coincident with decreasing atmospheric carbon dioxide concentrations and a deepening of the calcite compensation depth in the world's oceans, and that glaciation in the Northern Hemisphere began much later, between 10 and 6 million years ago. Here we present records of sediment and foraminiferal geochemistry covering the greenhouse-icehouse climate transition. We report evidence for synchronous deepening and subsequent oscillations in the calcite compensation depth in the tropical Pacific and South Atlantic oceans from ~42 million years ago, with a permanent deepening 34 million years ago. The most prominent variations in the calcite compensation depth coincide with changes in seawater oxygen isotope ratios of up to 1.5 per mil, suggesting a lowering of global sea level through significant storage of ice in both hemispheres by at least 100 to 125 metres. Variations in benthic carbon isotope ratios of up to ~1.4 per mil occurred at the same time, indicating large changes in carbon cycling. We suggest that the greenhouse-icehouse transition was closely coupled to the evolution of atmospheric carbon dioxide, and that negative carbon cycle feedbacks may have prevented the permanent establishment of large ice sheets earlier than 34 million years ago.
Resumo:
An evaluation of the global synchronicity and duration of "3rd-order" sea-level fluctuations during the Cretaceous greenhouse has been hampered by poor constraints on potential climatic and tectonic drivers, and limitations of geochronology and chronostratigraphic correlation. To provide insight into the nature of such sea-level fluctuations, here we present a new Late Cretaceous record from the Jordanian Levant Platform, comprising a detailed physical-, bio-, chemo- and sequence stratigraphy. Carbonate content of these strata reflects overall sequence stratigraphic development, and demonstrates a dramatic 3rd-order-scale cycle that is also apparent in the d°C record. Updated radioisotopic constraints and astrochronologic testing provide support for the inference of an ~1 million year long sea-level oscillation associated with this 3rd-order cycle, which likely reflects a long-period obliquity (1.2 Myr) control on eustasy and stratigraphic sequence development, linked to the global carbon cycle. The observation of cyclic sea-level fluctuations on this time scale suggests sustained global modulation of continental fresh-water-storage. The hypothesized link between astronomical forcing and sea-level forms a baseline approach in the global correlation of sequence boundaries.
Resumo:
Culture and mesocosm experiments are often carried out under high initial nutrient concentrations, yielding high biomass concentrations that in turn often lead to a substantial build-up of DOM. In such experiments, DOM can reach concentrations much higher than typically observed in the open ocean. To the extent that DOM includes organic acids and bases, it will contribute to the alkalinity of the seawater contained in the experimental device. Our analysis suggests that whenever substantial amounts of DOM are produced during the experiment, standard computer programmes used to compute CO2 fugacity can underestimate true fCO2 significantly when the computation is based on AT and CT. Unless the effect of DOM-alkalinity can be accounted for, this might lead to significant errors in the interpretation of the system under consideration with respect to the experimentally applied CO2 perturbation. Errors in the inferred fCO2 can misguide the development of parameterisations used in simulations with global carbon cycle models in future CO2-scenarios. Over determination of the CO2-system in experimental ocean acidification studies is proposed to safeguard against possibly large errors in estimated fCO2.
Resumo:
Carbonate oozes recovered by hydraulic piston coring at DSDP Site 586 on Ontong-Java Plateau and Site 591 on Lord Howe Rise have carbonate contents that are consistently higher than 90% with only minor variations. Consequently, paleoceanographic signals were not recorded in detail in the carbonate contents. However, mass accumulation rates of carbonate increased in the late Miocene to mid-Pliocene, reflecting an increase in productivity, then abruptly decreased from mid-Pliocene to the present. Variations in relative abundances of coarse material (foraminifers) and fine material (mostly calcareous nannofossils) do reflect histories of current winnowing and biogenic productivity at the two sites. The late Miocene from 10.5 to 6.5 m.y. ago was a time of relatively constant, quiet, pelagic sedimentation with typical southwest Pacific sedimentation rates of 20-25 m/m.y. The average coarse-fraction abundances are always higher at Site 586 than at Site 591, which reflects winnowing at Site 586. These conditions were interrupted between 6.5 to 4.0 m.y. ago when increased upwelling at the Subtropical Divergence and the Equatorial Divergence produced greater productivity of calcareous planktonic organisms. The increased productivity is suggested by large increases in both fineand coarse-fraction material and constant ratios of foraminifers to nannofossils. The maximum of productivity was about 4.0 m.y. ago. This period of increased upwelling is coincident with the inferred development of the West Antarctic ice sheet. The high productivity was followed by an abrupt increase in winnowing about 2.5 m.y. ago at Site 591, but not until about 2.0 m.y. ago at Site 586. By 2.0 m.y. ago in the late Pliocene, quiet, pelagic sedimentation conditions prevailed, similar to those of the late Miocene. The last 0.7 m.y. has been a period of relatively intense winnowing on Lord Howe Rise but not on Ontong-Java Plateau. The coarse-fraction data have both long- and short-period fluctuations. Long-period fluctuations at Site 591 average about 850 *10**3 yr./cycle and those at Site 586 average 430*10**3 yr./cycle. The highest amplitudes are found in the Pliocene and Quaternary sections. The short-period fluctuations range from 100 to 48*10**3 yr./cycle at Site 586 and from 250 to 33 *10**3 yr./cycle at Site 591. The effects of local fluctuations of productivity and winnowing have modified the primary orbital forcing signals at these two sites to yield complex paleoceanographic records.
Resumo:
This study presents a differentiated carbonate budget for marine surface sediments from the Mid-Atlantic Ridge of the South Atlantic, with results based on carbonate grain-size composition. Upon separation into sand, silt, and clay sub-fractions, the silt grain-size distribution was measured using a SediGraph 5100. We found regionally characteristic grain-size distributions with an overall minimum at 8 µm equivalent spherical diameter (ESD). SEM observations reveal that the coarse particles (>8 µm ESD) are attributed to planktic foraminifers and their fragments, and the fine particles (<8 µm ESD) to coccoliths. On the basis of this division, the regional variation of the contribution of foraminifers and coccoliths to the carbonate budget of the sediments are calculated. Foraminifer carbonate dominates the sediments in mesotropic regions whereas coccoliths contribute most carbonate in oligotrophic regions. The grain size of the coccolith share is constant over water depth, indicating a lower susceptibility for carbonate dissolution compared to foraminifers. Finally, the characteristic grain-size distribution in fine silt (<8 µm ESD) is set into context with the coccolith assemblage counted and biometrically measured using a SEM. The coccoliths present in the silt fraction are predominantly large species (length > 4 µm). Smaller species (length < 4 µm) belong to the clay fraction (<2 µm ESD). The average length of most frequent coccolith species is connected to prominent peaks in grain-size distributions (ESD) with a shape factor. The area below Gaussian distributions fitted to these peaks is suggested as a way to quantitatively estimate the carbonate contribution of single coccolith species more precisely compared to conventional volume estimates. The quantitative division of carbonate into the fraction produced by coccoliths and that secreted by foraminifers enables a more precise estimate for source/sink relations of consumed and released CO2 in the carbon cycle. The allocation of coccolith length and grain size (ESD) suggests size windows for the separation or accumulation of distinct coccolith species in investigations that depend on non to slightly-mixed signals (e.g., isotopic studies).
Resumo:
The impact of ocean acidification caused by the increasing atmospheric CO2 has been studied in marine calcifiers, including hermatypic corals. However, the effect of elevated pCO2 on the early developmental life-cycle stage of corals has been little studied. In this study, we reared polyps of Acropora digitifera in seawater at pHT 6.55, 7.31, 7.64, 7.77, and 8.03, controlled by CO2 bubbling. We measured the dry weights of polyp skeletons after the 40-d experiment to investigate the relationship between the seawater aragonite saturation state and polyp growth. In addition, we measured skeletal U/Ca ratio to estimate their pH dependence. Skeletal weights of coral polyps increased with the aragonite saturation state and reached an apparent saturation plateau above pH 7.77. U/Ca ratios had a strong inverse relationship with pH and a negligible relationship with skeletal growth rate (polyp weight), suggesting that skeletal U/Ca could be useful for reconstructing paleo-pH.
Resumo:
Precise measurements were conducted in continuous flow seawater mesocosms located in full sunlight that compared metabolic response of coral, coral-macroalgae and macroalgae systems over a diurnal cycle. Irradiance controlled net photosynthesis (Pnet), which in turn drove net calcification (Gnet), and altered pH. Pnet exerted the dominant control on [CO3]2- and aragonite saturation state (Omega arag) over the diel cycle. Dark calcification rate decreased after sunset, reaching zero near midnight followed by an increasing rate that peaked at 03:00 h. Changes in Omega arag and pH lagged behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet was the primary driver of calcification. Daytime coral metabolism rapidly removes dissolved inorganic carbon (DIC) from the bulk seawater and photosynthesis provides the energy that drives Gnet while increasing the bulk water pH. These relationships result in a correlation between Gnet and Omega arag, with Omega arag as the dependent variable. High rates of H+ efflux continued for several hours following mid-day peak Gnet suggesting that corals have difficulty in shedding waste protons as described by the Proton Flux Hypothesis. DIC flux (uptake) followed Pnet and Gnet and dropped off rapidly following peak Pnet and peak Gnet indicating that corals can cope more effectively with the problem of limited DIC supply compared to the problem of eliminating H+. Over a 24 h period the plot of total alkalinity (AT) versus DIC as well as the plot of Gnet versus Omega arag revealed a circular hysteresis pattern over the diel cycle in the coral and coral-algae mesocosms, but not the macroalgae mesocosm. Presence of macroalgae did not change Gnet of the corals, but altered the relationship between Omega arag and Gnet. Predictive models of how future global changes will effect coral growth that are based on oceanic Omega arag must include the influence of future localized Pnet on Gnet and changes in rate of reef carbonate dissolution. The correlation between Omega arag and Gnet over the diel cycle is simply the response of the CO2-carbonate system to increased pH as photosynthesis shifts the equilibria and increases the [CO3]2- relative to the other DIC components of [HCO3]- and [CO2]. Therefore Omega arag closely tracked pH as an effect of changes in Pnet, which also drove changes in Gnet. Measurements of DIC flux and H+ flux are far more useful than concentrations in describing coral metabolism dynamics. Coral reefs are systems that exist in constant disequilibrium with the water column.
Resumo:
Eight-month-old blocks of the coral Porites lobata colonized by natural Hawaiian euendolithic and epilithic communities were experimentally exposed to two different aqueous pCO2 treatments, 400 ppmv and 750 ppmv, for 3 months. The chlorophyte Ostreobium quekettii dominated communities at the start and at the end of the experiment (65-90%). There were no significant differences in the relative abundance of euendolithic species, nor were there any differences in bioeroded area at the surface of blocks (27%) between pCO2 treatments. The depth of penetration of filaments of O. quekettii was, however, significantly higher under 750 ppmv (1.4 mm) than under 400 ppmv (1 mm). Consequently, rates of carbonate dissolution measured under elevated pCO2 were 48% higher than under ambient pCO2 (0.46 kg CaCO3 dissolved m2/a versus 0.31 kg /m2/a). Thus, biogenic dissolution of carbonates by euendoliths in coral reefs may be a dominant mechanism of carbonate dissolution in a more acidic ocean.