156 resultados para capm


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estas notas de clase son de utilidad como material docente para los alumnos de la asignatura Econometría Financiera del Master en Banca y Finanzas Cuantitativas.La asignatura está dividida en dos partes y estas notas cubren el contenido sólo de la segunda parte. El contenido de las notas se estructuran siguiendo el temario de la asignatura en tres capítulos. El primero de ellos se ocupa de la especificación, estimación y contrastes en el Modelo de Valoración de Activos con Cartera de Mercado (CAPM). En el capítulo dos se especifica, estima y contrasta en Modelos de Valoración Multifactoriales (APT) y el tercer y último capítulo se ocupa del Modelo de Mercado. En cada capítulo se incluyen los contenidos del mismo. La bibliografía recomendada aparece al final de las notas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo dessa pesquisa é apresentar uma ferramenta alternativa ao valor econômico adicionado na mensuração da performance empresarial correlacionada com o valor de mercado. Na revisão da literatura apresenta-se o conceito de estrutura e custo de capital, utilizando a metodologia do CAPM e do APT. São igualmente apresentadas as principais medidas financeiras de desempenho tais como: retorno operacional sobre o investimento, retorno sobre o patrimônio liquido, retorno sobre os ativos, além de outras formas para cálculo do retorno. Na sequência introduzimos o conceito de lucro residual e o valor econômico adicionado, discutindo suas vantagens, desvantagens, dificuldades e limitações dessa ferramenta. Através do EVA podemos calcular o valor de mercado adicionado, fundamental para o cálculo do valor patrimonial ajustado. Também é apresentado nessa obra a interpretação do EVA pela ótica do modelo Fleuriet de planejamento financeiro. Após essa explanação teórica é apresentado o Financial Value Added proposto por esse trabalho, como alternativa ao Valor Econômico Adicionado na mensuração do desempenho empresarial. Essa ferramenta exclui da base de cálculo as receitas e despesas econômicas, uma vez que as mesmas em alguns casos distorcem o resultado como é constatado no teste com as empresas: Sadia S.A. e Perdigão S.A. onde os resultados foram 54% na Sadia e 13% na Perdigão superiores ao EVA. Em nenhum momento argumenta-se a substituição do EVA, apenas a introdução do FVA como alternativa nos casos em que o EVA não funcione adequadamente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muitos estudos buscam tentar prever o retorno potencial sobre portfólios de ações, com intuito de obter melhor rentabilidade sobre o capital aplicado. Diversas modelagens já foram utilizadas, sendo que as mais conhecidas são as que relacionam o risco com o retorno. Nesta linha destacam-se a Teoria de Carteiras proposta por Markowitz, e o CAPM de Sharpe. Através destas teorias entende-se a questão da influência da covariância dos retornos e que para um melhor desempenho de uma carteira, não é suficiente avaliar cada ativo individualmente. Por outro lado, diversas críticas em relação ao CAPM, vêm ensejando estudos complementares na busca de outras variáveis que melhorem os métodos de seleção de ativos. Fama e French (1993) fizeram um estudo com variáveis complementares em relação ao beta do CAPM, utilizando o tamanho e a relação Book to Market, conseguindo resultados melhores que o CAPM tradicional. O presente estudo leva em conta a questão do reinvestimento do lucro gerado e utilizando o modelo de Gordon propõe uma variável de classificação de empresas de crescimento e empresas valor, conceito já utilizado na literatura de finanças.Com base nesta variável montam-se carteiras de ações entre os anos de 2005 e 2012 e observa-se que é possível obter ganhos com a lógica proposta. Ao longo do período seria possível obter com as carteiras selecionadas ganhos de até 107,85% contra os retornos de 55,58% das carteiras com todos os ativos. Organizamos os mesmos ativos pela ótica da relação Book to Market as quais obtiveram retorno total do período de 90,42%. Apesar de notar uma mudança clara de comportamento, onde apenas nos quatro primeiros anos do estudo as carteiras com empresas value são superiores e nos quatro últimos períodos as carteiras de empresas growth são as melhores. Estes resultados são compatíveis com os resultados de Braga e Leal (2000), e Mescolin, Martinelli Braga e da Costa Jr. (1997), verificando um melhor desempenho para as empresas value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we introduce a new mathematical tool for optimization of routes, topology design, and energy efficiency in wireless sensor networks. We introduce a vector field formulation that models communication in the network, and routing is performed in the direction of this vector field at every location of the network. The magnitude of the vector field at every location represents the density of amount of data that is being transited through that location. We define the total communication cost in the network as the integral of a quadratic form of the vector field over the network area. With the above formulation, we introduce a mathematical machinery based on partial differential equations very similar to the Maxwell's equations in electrostatic theory. We show that in order to minimize the cost, the routes should be found based on the solution of these partial differential equations. In our formulation, the sensors are sources of information, and they are similar to the positive charges in electrostatics, the destinations are sinks of information and they are similar to negative charges, and the network is similar to a non-homogeneous dielectric media with variable dielectric constant (or permittivity coefficient). In one of the applications of our mathematical model based on the vector fields, we offer a scheme for energy efficient routing. Our routing scheme is based on changing the permittivity coefficient to a higher value in the places of the network where nodes have high residual energy, and setting it to a low value in the places of the network where the nodes do not have much energy left. Our simulations show that our method gives a significant increase in the network life compared to the shortest path and weighted shortest path schemes. Our initial focus is on the case where there is only one destination in the network, and later we extend our approach to the case where there are multiple destinations in the network. In the case of having multiple destinations, we need to partition the network into several areas known as regions of attraction of the destinations. Each destination is responsible for collecting all messages being generated in its region of attraction. The complexity of the optimization problem in this case is how to define regions of attraction for the destinations and how much communication load to assign to each destination to optimize the performance of the network. We use our vector field model to solve the optimization problem for this case. We define a vector field, which is conservative, and hence it can be written as the gradient of a scalar field (also known as a potential field). Then we show that in the optimal assignment of the communication load of the network to the destinations, the value of that potential field should be equal at the locations of all the destinations. Another application of our vector field model is to find the optimal locations of the destinations in the network. We show that the vector field gives the gradient of the cost function with respect to the locations of the destinations. Based on this fact, we suggest an algorithm to be applied during the design phase of a network to relocate the destinations for reducing the communication cost function. The performance of our proposed schemes is confirmed by several examples and simulation experiments. In another part of this work we focus on the notions of responsiveness and conformance of TCP traffic in communication networks. We introduce the notion of responsiveness for TCP aggregates and define it as the degree to which a TCP aggregate reduces its sending rate to the network as a response to packet drops. We define metrics that describe the responsiveness of TCP aggregates, and suggest two methods for determining the values of these quantities. The first method is based on a test in which we drop a few packets from the aggregate intentionally and measure the resulting rate decrease of that aggregate. This kind of test is not robust to multiple simultaneous tests performed at different routers. We make the test robust to multiple simultaneous tests by using ideas from the CDMA approach to multiple access channels in communication theory. Based on this approach, we introduce tests of responsiveness for aggregates, and call it CDMA based Aggregate Perturbation Method (CAPM). We use CAPM to perform congestion control. A distinguishing feature of our congestion control scheme is that it maintains a degree of fairness among different aggregates. In the next step we modify CAPM to offer methods for estimating the proportion of an aggregate of TCP traffic that does not conform to protocol specifications, and hence may belong to a DDoS attack. Our methods work by intentionally perturbing the aggregate by dropping a very small number of packets from it and observing the response of the aggregate. We offer two methods for conformance testing. In the first method, we apply the perturbation tests to SYN packets being sent at the start of the TCP 3-way handshake, and we use the fact that the rate of ACK packets being exchanged in the handshake should follow the rate of perturbations. In the second method, we apply the perturbation tests to the TCP data packets and use the fact that the rate of retransmitted data packets should follow the rate of perturbations. In both methods, we use signature based perturbations, which means packet drops are performed with a rate given by a function of time. We use analogy of our problem with multiple access communication to find signatures. Specifically, we assign orthogonal CDMA based signatures to different routers in a distributed implementation of our methods. As a result of orthogonality, the performance does not degrade because of cross interference made by simultaneously testing routers. We have shown efficacy of our methods through mathematical analysis and extensive simulation experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O intenso intercâmbio entre os países, resultante do processo de globalização, veio acrescer importância ao mercado de capitais. Os países em desenvolvimento procuram abrir as suas economias para receber investimentos externos. Quanto maior for o grau de desenvolvimento de uma economia mais ativo será o seu mercado de capitais. No entanto, tem-se verificado uma tendência de substituição de enfoque económico, que antes era mais dirigido ao planeamento empresarial para metas mais ligadas ao meio ambiente. O mercado de capitais é um sistema de distribuição de valores mobiliários cujo objectivo é proporcionar liquidez a títulos emitidos pelas empresas, com a finalidade de viabilizar o processo de capitalização desses papéis. O mercado de capitais é composto pelas bolsas de valores, sociedades corretoras e outras instituições financeiras que têm autorização da Comissão de Valores dos Mercados Mobiliários (CMVM). O mercado bolsista insere-se no mercado de capitais. Nesses mercados, é importante conseguir conjuntamente a maximização dos recursos (retornos) e minimização dos custos (riscos). O principal objectivo das bolsas de valores é promover um ambiente de negociação dos títulos e dos valores mobiliários das empresas. Muitos investidores têm a sua própria maneira de investir, consoante o perfil que cada um tem. Além do perfil dos investidores, é também pertinente analisar a questão do risco. Vaughan (1997) observa que, nos dias atuais, a questão da administração do risco está presente na vida de todos. Este trabalho tem o propósito de demonstrar a necessidade da utilização de ferramentas para a seleção de ativos e para a mensuração do risco e do retorno de aplicações de recursos financeiros nesses activos de mercados de capitais, por qualquer tipo de investidor, mais especificamente na compra de ações e montagem de uma carteira de investimento. Para isso usou-se o método de Elton e Gruber, analisou-se as rentabilidades, os riscos e os índices de desempenho de Treynor e Sharpe. Testes estatísticos para os retornos das ações foram executados visando analisar a aleatoriedade dos dados. Este trabalho conclui que pode haver vantagens na utilização do método de Elton e Gruber para os investidores propensos a utilzar ações de empresas socialmente responsáveis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os mercados financeiros têm um papel fundamental na dinamização das economias modernas. Às empresas cotadas oferece o capital necessário para impulsionar o seu crescimento e aos investidores individuais proporciona a diversificação das suas carteiras, usufruindo desta forma do crescimento e da vitalidade da economia mundial. A gestão de carteiras de ativos financeiros constitui uma área que procura apresentar mecanismos para a obtenção de uma relação ótima entre retorno e risco. Neste sentido, inúmeros estudos têm contribuído de forma significativa para a eficiência e para a prática desta técnica. Esta dissertação pretende analisar a metodologia desenvolvida por Elton-Gruber para a construção de carteiras otimizadas e aplicar as técnicas subjacentes ao mercado acionista português. Para o efeito, serão realizadas pesquisas em fontes bibliográficas da especialidade e serão consultadas bases de dados de cotações históricas das ações e do índice de mercado nacional. A aplicação incidiu sobre ações cotadas no índice PSI-20 durante o período compreendido entre 2010 e 2014. No intuito de melhorar a compreensão das séries de retornos das amostras, o estudo de caráter quantitativo também recorreu à análise estatística. As evidências mostram que a carteira otimizada, no período em análise, contém apenas as ações da empresa Portucel. Este resultado estará condicionado pelos efeitos da crise financeira que iniciou em 2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to examine whether Corporate Social Responsibility (CSR) announcements of the three biggest American fast food companies (McDonald’s, YUM! Brands and Wendy’s) have any effect on their stock returns as well as on the returns of the industry index (Dow Jones Restaurants and Bars). The time period under consideration starts on 1st of May 2001 and ends on 17th of October 2013. The stock market reaction is tested with an event study utilizing CAPM. The research employs the daily stock returns of the companies, the index and the benchmarks (NASDAQ and NYSE). The test of combined announcements did not reveal any significant effect on the index and McDonald’s. However the stock returns of Wendy’s and YUM! Brands reacted negatively. Moreover, the company level analyses showed that to their own CSR releases McDonald’s stock returns respond positively, YUM! Brands reacts negatively and Wendy’s does not have any reaction. Plus, it was found that the competitors of the announcing company tend to react negatively to all the events. Furthermore, the division of the events into sustainability categories showed statistically significant negative reaction from the Index, McDonald’s and YUM! Brands towards social announcements. At the same time only the index was positively affected by to the economic and environmental CSR news releases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latent variable models in finance originate both from asset pricing theory and time series analysis. These two strands of literature appeal to two different concepts of latent structures, which are both useful to reduce the dimension of a statistical model specified for a multivariate time series of asset prices. In the CAPM or APT beta pricing models, the dimension reduction is cross-sectional in nature, while in time-series state-space models, dimension is reduced longitudinally by assuming conditional independence between consecutive returns, given a small number of state variables. In this paper, we use the concept of Stochastic Discount Factor (SDF) or pricing kernel as a unifying principle to integrate these two concepts of latent variables. Beta pricing relations amount to characterize the factors as a basis of a vectorial space for the SDF. The coefficients of the SDF with respect to the factors are specified as deterministic functions of some state variables which summarize their dynamics. In beta pricing models, it is often said that only the factorial risk is compensated since the remaining idiosyncratic risk is diversifiable. Implicitly, this argument can be interpreted as a conditional cross-sectional factor structure, that is, a conditional independence between contemporaneous returns of a large number of assets, given a small number of factors, like in standard Factor Analysis. We provide this unifying analysis in the context of conditional equilibrium beta pricing as well as asset pricing with stochastic volatility, stochastic interest rates and other state variables. We address the general issue of econometric specifications of dynamic asset pricing models, which cover the modern literature on conditionally heteroskedastic factor models as well as equilibrium-based asset pricing models with an intertemporal specification of preferences and market fundamentals. We interpret various instantaneous causality relationships between state variables and market fundamentals as leverage effects and discuss their central role relative to the validity of standard CAPM-like stock pricing and preference-free option pricing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We also test a conditional APT model by using the difference between the 30-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. The conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from a total of 25 securities exchanged on the Brazilian markets. The inclusion of this second factor proves to be crucial for the appropriate pricing of the portfolios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper develops a general stochastic framework and an equilibrium asset pricing model that make clear how attitudes towards intertemporal substitution and risk matter for option pricing. In particular, we show under which statistical conditions option pricing formulas are not preference-free, in other words, when preferences are not hidden in the stock and bond prices as they are in the standard Black and Scholes (BS) or Hull and White (HW) pricing formulas. The dependence of option prices on preference parameters comes from several instantaneous causality effects such as the so-called leverage effect. We also emphasize that the most standard asset pricing models (CAPM for the stock and BS or HW preference-free option pricing) are valid under the same stochastic setting (typically the absence of leverage effect), regardless of preference parameter values. Even though we propose a general non-preference-free option pricing formula, we always keep in mind that the BS formula is dominant both as a theoretical reference model and as a tool for practitioners. Another contribution of the paper is to characterize why the BS formula is such a benchmark. We show that, as soon as we are ready to accept a basic property of option prices, namely their homogeneity of degree one with respect to the pair formed by the underlying stock price and the strike price, the necessary statistical hypotheses for homogeneity provide BS-shaped option prices in equilibrium. This BS-shaped option-pricing formula allows us to derive interesting characterizations of the volatility smile, that is, the pattern of BS implicit volatilities as a function of the option moneyness. First, the asymmetry of the smile is shown to be equivalent to a particular form of asymmetry of the equivalent martingale measure. Second, this asymmetry appears precisely when there is either a premium on an instantaneous interest rate risk or on a generalized leverage effect or both, in other words, whenever the option pricing formula is not preference-free. Therefore, the main conclusion of our analysis for practitioners should be that an asymmetric smile is indicative of the relevance of preference parameters to price options.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We also test a conditional APT model by using the difference between the 30-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. the conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from a total of 25 securities exchanged on the Brazilian markets. the inclusion of this second factor proves to be crucial for the appropriate pricing of the portfolios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.